def prediction(): if request.method == 'POST': data = [int(x) for x in request.form.values()] data = np.array([data]) print(data) data_df = pd.DataFrame( data=data, columns=["YearBuilt", "BedroomAbvGr", "KitchenAbvGr"]) # data_df = pd.DataFrame() # data_df["YearBuilt"] = data[0] # data_df["BedroomAbvGr"] = data[1] # data_df["KitchenAbvGr"] = data[2] print("data frame after assigning values", data_df.head()) # data preprocessing data_df = data_preprocessing(data_df) data_df["SalePrice"] = 0 # feature extractor features, label = feature_extractor(data_df) model = read_model("output/model.pkl") label = predict_price(features, model) print(label) return render_template( 'houseprice.html', predicted_house_price='House Price should be $ {}'.format( label[0][0])) else: return render_template('houseprice.html')
message = "defining stubs" print(message) # read data data = pd.read_csv(dataset_path) print(data.shape) print(data.head(5)) # data selection data = data_selection(data, selected_variables) print(data.shape) print(data.head(5)) # data preprocessing data = data_preprocessing(data) print(data.shape) print(data.head(5)) data[target_varibale[0]] = 0 print(data.shape) print(data.head(5)) # feature extractor featueres, label = feature_extractor(data) print(featueres.shape) print(featueres.head(5)) print(label.shape) print(label.head(5)) model = read_model(model_path) predicted_labels = predict_price(featueres, model) print(predicted_labels)