Esempio n. 1
0
    def __init__(self, dataset, xy_mask, uv_mask=None):

        self.dataset = dataset

        self.xy_mask = xy_mask

        self.grid_3d = Grid3D(grid_2d=al.Grid.uniform(
            shape_2d=xy_mask.shape_2d,
            pixel_scales=xy_mask.pixel_scales,
            sub_size=xy_mask.sub_size),
                              n_channels=xy_mask.n_channels)

        self.uv_wavelengths = dataset.uv_wavelengths
        self.visibilities = dataset.visibilities

        if uv_mask is None:
            self.uv_mask = np.full(shape=self.visibilities.shape,
                                   fill_value=False)
        else:
            self.uv_mask = uv_mask

        self.uv_mask_real_and_imag_averaged = np.full(
            shape=self.uv_mask.shape[:-1], fill_value=False)

        self.noise_map = dataset.noise_map

        self.noise_map_real_and_imag_averaged = np.average(a=self.noise_map,
                                                           axis=-1)

        self.z_step_kms = dataset.z_step_kms
Esempio n. 2
0
    def __init__(self, dataset, xy_mask, uv_mask=None):

        self.dataset = dataset

        self.xy_mask = xy_mask # NOTE: rename to real_space_mask

        # NOTE: This should change and instead be initialized from mask
        if xy_mask.pixel_scales is not None:

            self.grid_3d = Grid3D(
                grid_2d=aa.structures.grids.MaskedGrid.from_mask(
                    mask=xy_mask.mask_2d
                ),
                n_channels=xy_mask.n_channels
            )

        self.uv_wavelengths = dataset.uv_wavelengths
        self.visibilities = dataset.visibilities
        self.noise_map = dataset.noise_map

        if uv_mask is None:
            self.uv_mask = np.full(
                shape=self.visibilities.shape,
                fill_value=False
            )
        else:
            self.uv_mask = uv_mask

        # TODO: Turn this into a function
        self.uv_mask_real_and_imag_averaged = np.full(
            shape=self.uv_mask.shape[:-1],
            fill_value=False
        )
        for i in range(self.uv_mask.shape[0]):
            for j in range(self.uv_mask.shape[1]):
                if self.uv_mask[i, j, 0] == self.uv_mask[i, j, 1] == True:
                    self.uv_mask_real_and_imag_averaged[i, j] = True

        self.noise_map_real_and_imag_averaged = np.average(
            a=self.noise_map, axis=-1
        )

        self.z_step_kms = dataset.z_step_kms
Esempio n. 3
0
    def __init__(self, dataset, mask):

        self.dataset = dataset
        # TODO: Check that dataset has attribute data.

        # TODO: Check that mask and dataset.data have the same shape.
        self.mask = mask

        #if mask.pixel_scales is not None:

        self.grid_3d = Grid3D(grid_2d=al.Grid.uniform(
            shape_2d=mask.shape_2d,
            pixel_scales=mask.pixel_scales,
            sub_size=mask.sub_size),
                              n_channels=mask.n_channels)

        self.data = dataset.data
        self.noise_map = dataset.noise_map

        self.z_step_kms = dataset.z_step_kms
Esempio n. 4
0
    def __init__(self, dataset, xy_mask, uv_mask=None, region=None):

        self.dataset = dataset

        self.xy_mask = xy_mask

        # NOTE: This should change and instead be initialized from mask
        if xy_mask.pixel_scales is not None:

            self.grid_3d = Grid3D(
                grid_2d=aa.structures.grids.MaskedGrid.from_mask(
                    mask=xy_mask.mask_2d
                ),
                n_channels=xy_mask.n_channels
            )

        self.uv_wavelengths = dataset.uv_wavelengths
        self.visibilities = dataset.visibilities

        if uv_mask is None:
            self.uv_mask = np.full(
                shape=self.visibilities.shape,
                fill_value=False
            )
        else:
            self.uv_mask = uv_mask

        # NOTE: We cant have real and imag being different, either both are True of both are False.
        # TODO: If both real and imag are True then this is True, but if one is False use that for the averaging.
        self.uv_mask_real_and_imag_averaged = np.full(
            shape=self.uv_mask.shape[:-1],
            fill_value=False
        )

        self.noise_map = dataset.noise_map

        self.noise_map_real_and_imag_averaged = np.average(
            a=self.noise_map, axis=-1
        )

        self.z_step_kms = dataset.z_step_kms
Esempio n. 5
0
    def __init__(self, dataset, xy_mask, uv_mask=None):

        self.dataset = dataset

        self.xy_mask = xy_mask

        self.grid_3d = Grid3D(grid_2d=al.Grid.uniform(
            shape_2d=xy_mask.shape_2d,
            pixel_scales=xy_mask.pixel_scales,
            sub_size=xy_mask.sub_size),
                              n_channels=xy_mask.n_channels)

        self.uv_wavelengths = dataset.uv_wavelengths
        self.visibilities = dataset.visibilities
        self.noise_map = dataset.noise_map

        if uv_mask is None:
            self.uv_mask = np.full(shape=self.visibilities.shape,
                                   fill_value=False)
        else:
            if uv_mask.shape == self.visibilities.shape:
                self.uv_mask = uv_mask
            else:
                raise ValueError(
                    "The shape of the uv_mask does not match the shape of the visibilities"
                )

        self.uv_mask_real_and_imag_averaged = np.full(
            shape=self.uv_mask.shape[:-1], fill_value=False)
        for i in range(self.uv_mask.shape[0]):
            for j in range(self.uv_mask.shape[1]):
                if self.uv_mask[i, j, 0] == self.uv_mask[i, j, 1] == True:
                    self.uv_mask_real_and_imag_averaged[i, j] = True

        self.noise_map_real_and_imag_averaged = np.average(a=self.noise_map,
                                                           axis=-1)

        self.z_step_kms = dataset.z_step_kms
Esempio n. 6
0
        raise ValueError("...")

    return mask.astype(bool)


if __name__ == "__main__":

    transformer_class = al.TransformerFINUFFT

    grid_3d = Grid3D(
        grid_2d=al.Grid.uniform(
            shape_2d=(
                n_pixels,
                n_pixels
            ),
            pixel_scales=(
                pixel_scale,
                pixel_scale
            ),
            sub_size=1
        ),
        n_channels=n_channels
    )

    # xy_mask = Mask3D.unmasked(
    #     shape_3d=grid_3d.shape_3d,
    #     pixel_scales=grid_3d.pixel_scales,
    #     sub_size=grid_3d.sub_size,
    # )
    xy_mask = Mask3D.manual(
        mask_2d=al.Mask.circular(
            shape_2d=grid_3d.shape_2d,