# format of data # disitstrain.txt contains 3000 lines, each line 785 numbers, comma delimited full_path = os.path.realpath(__file__) path, filename = os.path.split(full_path) data_filepath = '../data' data_train_filename = 'digitstrain.txt' data_valid_filename = 'digitsvalid.txt' data_test_filename = 'digitstest.txt' data_train_filepath = os.path.join(path, data_filepath, data_train_filename) data_valid_filepath = os.path.join(path, data_filepath, data_valid_filename) data_test_filepath = os.path.join(path, data_filepath, data_test_filename) print('start initializing...') numpy.random.seed(1099) x_train, _ = load_data.load_from_path(data_train_filepath) x_valid, _ = load_data.load_from_path(data_valid_filepath) myAE = autoencoder.AutoEncoder(28 * 28, hidden_units=100) myAE.set_visualize(28, 28) myAE.set_autostop(window=40, stride=20) myAE.train(x_train, x_valid, k=1, epoch=3000, learning_rate=0.03, batch_size=128, plotfile='script-2-5-AE')
data_train_filename = 'digitstrain.txt' data_valid_filename = 'digitsvalid.txt' data_test_filename = 'digitstest.txt' data_train_filepath = os.path.join(path, data_filepath, data_train_filename) data_valid_filepath = os.path.join(path, data_filepath, data_valid_filename) data_test_filepath = os.path.join(path, data_filepath, data_test_filename) print('start initializing...') network.init_nn(random_seed=1099) learning_rates = [0.02] momentums = [0.9] regularizers = [0.00001] x_train, y_train = load_data.load_from_path(data_train_filepath) x_valid, y_valid = load_data.load_from_path(data_valid_filepath) for i2 in range(len(regularizers)): for i3 in range(len(momentums)): for i4 in range(len(learning_rates)): layers = [layer.Linear(784, 100), layer.BN(100, 100), layer.Sigmoid(100, 100), layer.Linear(100, 100), layer.BN(100, 100), layer.Sigmoid(100, 100), layer.SoftmaxLayer(100, 10)] name = 'network2' + '-' + str(i2) + '-' + str(i3) + '-' + str(i4) + '.dump' myNN = NN(layers, learning_rate=learning_rates[i4], regularizer=regularizers[i2], momentum=momentums[i3]) myNN.train(x_train, y_train, x_valid, y_valid, epoch=300, batch_size=32)