Esempio n. 1
0
def test_matrix_multiplication():
    A = Matrix([[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6], [4, 5, 6, 7]])
    B = Matrix([[0, 1, 2, 4], [1, 2, 4, 8], [2, 4, 8, 16], [4, 8, 16, 32]])
    C = Matrix([[24, 49, 98, 196], [31, 64, 128, 256], [38, 79, 158, 316],
                [45, 94, 188, 376]])

    assert A @ B == C
Esempio n. 2
0
def test_matrix_determinant_3x3():
    A = Matrix([[1, 2, 6], [-5, 8, -4], [2, 6, 4]])

    assert A.cofactor(0, 0) == 56
    assert A.cofactor(0, 1) == 12
    assert A.cofactor(0, 2) == -46
    assert A.determinant == -196
Esempio n. 3
0
def test_matrix_determinant_4x4():
    A = Matrix([[-2, -8, 3, 5], [-3, 1, 7, 3], [1, 2, -9, 6], [-6, 7, 7, -9]])

    assert A.cofactor(0, 0) == 690
    assert A.cofactor(0, 1) == 447
    assert A.cofactor(0, 2) == 210
    assert A.cofactor(0, 3) == 51
    assert A.determinant == -4071
Esempio n. 4
0
  def train(self, input_list, target_list):
    """
    Trains the neural network using the given input_list and target_array.

    Args:
      input_list: List of numbers containing the input values.
      target_list: List of numbers containing the target values.

    Returns:
      Returns the resulting neural network.
    """

    inputs = Matrix.from_list(input_list)
    hidden = Matrix.dot_product(self.weights_ih, inputs)
    hidden.add_matrix(self.bias_h)
    hidden.map(self.activation_function.func)

    outputs = Matrix.dot_product(self.weights_ho, hidden)
    outputs.add_matrix(self.bias_o)
    outputs.map(self.activation_function.func)

    targets = Matrix.from_list(target_list)

    # Calculate the error
    output_errors = targets.sub_matrix(outputs, False)

    # Calculate gradient
    gradients = outputs.map(self.activation_function.dfunc, False)
    gradients.mul_matrix(output_errors)
    gradients.mul_scalar(self.learning_rate)

    # Calculate deltas
    hidden_t = Matrix.transpose(hidden)
    weights_ho_deltas = Matrix.dot_product(gradients, hidden_t)

    # Adjust the weights and the biases by the calculated deltas
    self.weights_ho.add_matrix(weights_ho_deltas)
    self.bias_o.add_matrix(gradients)


    # Calculate the hidden layer errors
    weights_ho_t = Matrix.transpose(self.weights_ho)
    hidden_errors = Matrix.dot_product(weights_ho_t, output_errors)

    # Calculate hidden gradient
    hidden_gradients = hidden.map(self.activation_function.dfunc, False)
    hidden_gradients.mul_matrix(hidden_errors)
    hidden_gradients.mul_scalar(self.learning_rate)

    # Calculate input -> hidden deltas
    inputs_t = Matrix.transpose(inputs)
    weights_ih_deltas = Matrix.dot_product(hidden_gradients, inputs_t)

    # Adjust the weights and the biases by the calculated deltas
    self.weights_ih.add_matrix(weights_ih_deltas)
    self.bias_h.add_matrix(hidden_gradients)

    return self
Esempio n. 5
0
def qr(A):

    assert A.row_num() == A.col_num(), "A must be square"

    basis = [A.col_vector(i) for i in range(A.col_num())]
    P = gram_schmidt_process(basis)
    Q = Matrix([v / v.norm() for v in P]).T()
    R = Q.T().dot(A)

    return Q, R
 def __init__(self, emule, mode):
     self.win = False
     self.running = True
     self.emule = emule
     self.c = True
     self.grill = Grill()
     self.matrix = Matrix()
     if not self.emule:
         self.machine = Machine()
     self.strategy = IA(self.matrix)
Esempio n. 7
0
def inv(A):

    if A.row_num() != A.col_num():
        return None

    n = A.row_num()
    ls = LinearSystem(A, Matrix.identity(n))
    if not ls.gauss_jordan_elimination():
        return None

    invA = [[row[i] for i in range(n, 2 * n)] for row in ls.Ab]
    return Matrix(invA)
Esempio n. 8
0
def test_matrix_inverse_4x4():
    A = Matrix([[-5, 2, 6, -8], [1, -5, 1, 8], [7, 7, -6, -7], [1, -3, 7, 4]])
    B = A.inv

    assert A.determinant == 532
    assert A.cofactor(2, 3) == -160
    assert B[3, 2] == -160 / 532
    assert A.cofactor(3, 2) == 105
    assert B[2, 3] == 105 / 532

    assert B == Matrix([[0.21805, 0.45113, 0.24060, -0.04511],
                        [-0.80827, -1.45677, -0.44361, 0.52068],
                        [-0.07895, -0.22368, -0.05263, 0.19737],
                        [-0.52256, -0.81391, -0.30075, 0.30639]])
Esempio n. 9
0
  def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate=0.1, activation_function=sigmoid):
    """
    NeuralNetwork constructor: creates a neural network.

    Args:
      input_nodes: The number of input_nodes.
      hidden_nodes: The number of hidden_nodes.
      output_nodes: The number of output_nodes.
      learning_rate: The learning rate value (default 0.1).
      activation_function: The activation function (default sigmoid).

    Returns:
      Returns a new neural network object.
    """

    self.input_nodes = input_nodes
    self.hidden_nodes = hidden_nodes
    self.output_nodes = output_nodes

    self.weights_ih = Matrix(self.hidden_nodes, self.input_nodes).randomize()
    self.weights_ho = Matrix(self.output_nodes, self.hidden_nodes).randomize()

    self.bias_h = Matrix(self.hidden_nodes, 1).randomize()
    self.bias_o = Matrix(self.output_nodes, 1).randomize()

    self.learning_rate = learning_rate
    self.activation_function = activation_function
Esempio n. 10
0
class Game:
    def __init__(self, emule, mode):
        self.win = False
        self.running = True
        self.emule = emule
        self.c = True
        self.grill = Grill()
        self.matrix = Matrix()
        if not self.emule:
            self.machine = Machine()
        self.strategy = IA(self.matrix)

    def change_turn(self):
        self.turn = 3 - self.turn

    def get_choice(self):
        if self.turn == Refr.PLAYER:
            if self.emule:
                self.choice = self.grill.get_position()
            else:
                self.choice = self.machine.wait_player()
        elif self.turn == Refr.COMPUTER:
            self.choice = self.strategy.get_choice()

    def state(self):
        if self.choice == Refr.QUIT:
            self.running = False
        #if self.matrix.control_victory():
        #    self.win = True

    def go_turn(self):
        self.matrix.show()
        self.get_choice()
        y = self.matrix.add(self.turn, self.choice)
        self.grill.token(self.turn, self.choice, y)
        self.change_turn()
        self.state()

    def run(self, starter):
        self.turn = starter
        while not self.win and self.running:
            if self.c:
                self.go_turn()
            else:
                sleep(0.1)
        return self.turn
Esempio n. 11
0
 def build_emission_matrix(self):
     emission_probability_of_unk_word = 1 / len(self.training_data.get_unique_tags())
     matrix = dict(self.training_data.matrix)
     for tag, word_count in self.training_data.items():
         for word in word_count.keys():
             matrix[tag][word] = self.training_data[tag][word] / self.__get_tag_count(tag)
         matrix[tag][unk_word] = emission_probability_of_unk_word
     return Matrix(matrix)
Esempio n. 12
0
def test_matrix():
    M = Matrix([[1, 2, 3, 4], [5.5, 6.5, 7.5, 8.5], [9, 10, 11, 12],
                [13.5, 14.5, 15.5, 16.5]])

    assert M[0, 0] == 1
    assert M[1, 0] == 5.5
    assert M[2, 0] == 9
    assert M[3, 3] == 16.5
    assert M[3, 2] == 15.5
Esempio n. 13
0
def lu(matrix):
    assert matrix.row_num() == matrix.col_num(
    ), "matrix must be a square matrix"

    n = matrix.row_num()
    A = [matrix.row_vector(i) for i in range(n)]

    L = [[1.0 if i == j else 0.0 for i in range(n)] for j in range(n)]

    for i in range(n):
        # 看A[i][i]位置是否可以是主元
        if is_zero(A[i][i]):
            return None, None
        else:
            for j in range(i + 1, n):
                p = A[j][i] / A[i][i]
                A[j] = A[j] - p * A[i]
                L[j][i] = p

    return Matrix(L), Matrix([A[i].underlying_list() for i in range(n)])
Esempio n. 14
0
def main(sudoku):
    """
    http://lanl.arxiv.org/pdf/cs/0011047
    :param sudoku:
    :return:
    """
    # m = Matrix("sudoku", 9, 3, sudoku)
    m = Matrix(sudoku)

    dlx = DLX(m)
    dlx.search(0)
Esempio n. 15
0
  def predict(self, input_list):
    """
    Calculates the outputs using the given inputs.

    Args:
      input_list: List of numbers containing the input values.

    Returns:
      Returns a list of numbers containing the outputs.
    """

    inputs = Matrix.from_list(input_list)
    hidden = Matrix.dot_product(self.weights_ih, inputs)
    hidden.add_matrix(self.bias_h)
    hidden.map(self.activation_function.func)

    outputs = Matrix.dot_product(self.weights_ho, hidden)
    outputs.add_matrix(self.bias_o)
    outputs.map(self.activation_function.func)

    return outputs.to_list()
Esempio n. 16
0
def gram_schmidt_process(basis):

    matrix = Matrix(basis)
    assert rank(matrix) == len(basis)

    res = [basis[0]]
    for i in range(1, len(basis)):
        p = basis[i]
        for r in res:
            p = p - basis[i].dot(r) / r.dot(r) * r
        res.append(p)
    return res
Esempio n. 17
0
def view_transform(from_position: Point, to: Point, up: Vector) -> Matrix:
    forward = normalize(to - from_position)
    left = cross(forward, normalize(up))
    true_up = cross(left, forward)
    orientation = Matrix([
        [left.x, left.y, left.z, 0],
        [true_up.x, true_up.y, true_up.z, 0],
        [-forward.x, -forward.y, -forward.z, 0],
        [0, 0, 0, 1],
    ])
    return orientation * translation(-from_position.x, -from_position.y,
                                     -from_position.z)
Esempio n. 18
0
def test_matrix_cofactor_3x3():
    A = Matrix([[3, 5, 0], [2, -1, -7], [6, -1, 5]])

    assert A.minor(0, 0) == -12
    assert A.cofactor(0, 0) == -12
    assert A.minor(1, 0) == 25
    assert A.cofactor(1, 0) == -25
Esempio n. 19
0
class MatrixTest(unittest.TestCase):
    # Tests
    def setUp(self):
        self.matrix = Matrix("9 8 7\n5 3 2\n6 6 7")

    # def test_extract_row_from_one_number_matrix(self):
    #     matrix = Matrix("1")
    #     self.assertEqual(matrix.row(1), [1])

    def test_rows(self):
        self.assertEqual([[9, 8, 7], [5, 3, 2], [6, 6, 7]], self.matrix.row())

    def test_columns__1(self):
        self.assertEqual([[9, 5, 6], [8, 3, 6], [7, 2, 7]],
                         self.matrix.column())

    def test_matrix(self):
        new_matrix = Matrix("9 8 7 3\n5 3 2 3\n6 6 7 3")
        self.assertEqual([[9, 8, 7, 3], [5, 3, 2, 3], [6, 6, 7, 3]],
                         new_matrix.row())
        self.assertEqual([[9, 5, 6], [8, 3, 6], [7, 2, 7], [3, 3, 3]],
                         new_matrix.column())
Esempio n. 20
0
    def __init__(self):
        self.m1 = Matrix([[1, 123124142, 143, 46545], [5, 6, 7, 8],
                          [10, 1211, 12, 1321, 146436]])
        # mag=6 c=5 r=3
        self.m2 = Matrix([[80, 8, 8, 8], [8, 8000, 80000, 8, 2],
                          [8, 8, 8, 800000]])
        # mag=1 c=4 r=3
        self.m3 = Matrix([[8, 8, 8, 8], [8, 8, 8, 8], [8, 8, 8, 8]])

        # mag=5 c=4 r=3
        self.m4 = Matrix([[8, 8, 8, 8], [8, 8, 8, 8], [8, 8, 8, 8],
                          [80, 800, 8000, 80000]])

        self.m5 = Matrix([[1, 123124142, 143, 46545, 5, 1, 2], [5, 6, 7, 8],
                          [10, 1211, 12, 1321, 146436]])

        self.m = Matrix([['A', 'B', 'C', 'D', None], ['E', 'F', 'G', 'H', 'I'],
                         ['J', 'K', 'L', 'M', None]])
Esempio n. 21
0
def test_matrix_determinant_2x2():
    A = Matrix([[1, 5], [-3, 2]])

    assert A.determinant == 17
def test_init_0D():
    bp.basic_test(res=Matrix("A"), expected="A", res_type=Matrix)
def test_init_2D():
    bp.basic_test(res=Matrix([["A", "B"], ["C", "D"]]),
                  expected=[["A", "B"], ["C", "D"]],
                  res_type=Matrix)
def test_init_1D():
    bp.basic_test(res=Matrix(["A", "B"]), expected=["A", "B"], res_type=Matrix)
Esempio n. 25
0
 def build_unigram_tag_probability(self):
     vector = dict((tag, 0) for tag in self.unique_tags)
     number_of_tags = len(self.tags_in_sequence)
     for tag in self.unique_tags:
         vector[tag] = self.tags_in_sequence.count(tag) / number_of_tags
     return Matrix(vector)
Esempio n. 26
0
def test_matrix_identity():
    A = Matrix([[1, 2, 3, 4], [2, 4, 4, 2], [8, 6, 4, 1], [0, 0, 0, 1]])

    I = IdentityMatrix(4)

    assert A @ I == A and I @ A == A
Esempio n. 27
0
def test_matrix_transpose():
    A = Matrix([[1, 2, 3, 4], [2, 4, 4, 2], [8, 6, 4, 1], [0, 0, 0, 1]])

    AT = Matrix([[1, 2, 8, 0], [2, 4, 6, 0], [3, 4, 4, 0], [4, 2, 1, 1]])
    assert A.T == AT
Esempio n. 28
0
def test_matrix_submatrix_3x3():
    A = Matrix([[1, 5, 0], [-3, 2, 7], [0, 6, -3]])
    a = A.submatrix(0, 2)
    assert a.n == 2 and a.m == 2
    assert a == Matrix([[-3, 2], [0, 6]])
Esempio n. 29
0
def test_matrix_minor_3x3():
    A = Matrix([[3, 5, 0], [2, -1, -7], [6, -1, 5]])
    b = A.submatrix(1, 0)

    assert b.determinant == 25
    assert A.minor(1, 0) == 25
Esempio n. 30
0
def test_matrix_submatrix_4x4():
    A = Matrix([[-6, 1, 1, -6], [3, 2, 5, 1], [2, 1, -2, 3], [1, 5, 2, 7]])
    a = A.submatrix(0, 3)

    assert a.n == 3 and a.m == 3
    assert a == Matrix([[3, 2, 5], [2, 1, -2], [1, 5, 2]])