def _build_L_deltaV(self, v, v0):
        """
        Compute the matrix product L * delta_V as it remains constant over time
        delta_V = v - v0

        :param v: expression of interest
        :param v0: neutral expression
        :return:
        """
        LdV = []
        for k in range(self.K):
            # compute delta_V
            if np.array_equal(v[k], v0):
                # avoid the case of v[k] = v0
                dV = v[k]
            else:
                dV = v[k] - v0
            # build mesh
            mesh = triangulate_vertices(dV)
            # build Laplacian
            L = build_Laplacian(mesh, n_v)
            L = L.todense()
            L_expand = np.zeros((n_n, n_n))
            # expand L by 3
            for i in range(n_n):
                for j in range(n_n):
                    if i % 3 == 0 and j % 3 == 0:
                        L_expand[i, j] = L[int(i / 3), int(j / 3)]
                    if i % 3 == 1 and j % 3 == 1:
                        L_expand[i, j] = L[int(i / 3), int(j / 3)]
                    if i % 3 == 2 and j % 3 == 2:
                        L_expand[i, j] = L[int(i / 3), int(j / 3)]
            LdV.append(L_expand @ dV)

        return np.array(LdV)
Esempio n. 2
0
    def __init__(self, delta_gk):
        self.delta_gk = delta_gk
        self.K = np.shape(self.delta_gk)[0]
        self.M = np.shape(self.delta_gk)[1]

        self.L = []
        for k in range(self.K):
            mesh = triangulate_vertices(delta_gk[k])
            self.L.append(build_Laplacian(mesh, self.M))
        self.L = np.array(self.L)
Esempio n. 3
0
    def __init__(self, delta_gk, ref):
        self.delta_gk = delta_gk
        self.K = np.shape(self.delta_gk)[0]
        self.M = np.shape(self.delta_gk)[1]

        self.L = []
        for k in range(self.K):
            # points = delta_gk[k]
            # mesh = triangulate_vertices(points)
            # L = build_Laplacian(mesh, self.M).todense()
            # # self.L.append(np.diag(L))
            # self.L.append(L)

            points = ref + delta_gk[k]
            mesh = triangulate_vertices(points)
            L = build_Laplacian(mesh, self.M).todense()
            # self.L2.append(np.diag(L))
            self.L.append(L)
        # self.L = np.array(self.L)
        self.L = np.array(self.L)
Esempio n. 4
0
    dgk = np.random.rand(n_k, n_m, 3)
    dp = np.random.rand(n_k, n_n)
    print("dgk")
    print(dgk)
    print("dp")
    print(dp)

    # create EMesh object
    e_mesh = EMesh(dgk)

    # control compute e_mesh
    print("compute control e_mesh")
    emesh_list = []
    for k in range(n_k):
        mesh = triangulate_vertices(dgk[k])
        L = build_Laplacian(mesh, n_m)
        dv = np.reshape(dp[k], (-1, 3)) - dgk[k]
        l_op = L.dot(dv)
        norm = np.linalg.norm(l_op, axis=1)**2
        emesh_list.append(norm)

    emesh_ctrl = np.sum(emesh_list) / n_m
    print("emesh_ctrl =", emesh_ctrl)

    # compute e_mesh
    print("compute e_mesh")
    e_mesh_fn = e_mesh.get_eMesh()
    emesh = e_mesh_fn(dp)
    print("emesh =", emesh)

    assert emesh == emesh_ctrl
Esempio n. 5
0
    print("dgk")
    print(dgk)
    print("dp")
    print(dp)

    # create EMesh object
    e_mesh = EMesh(dgk, dg_ref)

    # control compute e_mesh
    print("compute control e_mesh")
    dp = np.reshape(dp, (n_k, n_m, 3))
    emesh_ctrl = 0
    for k in range(n_k):
        points = dg_ref + dgk[k]
        mesh = triangulate_vertices(points)
        L = build_Laplacian(mesh, n_m).todense()
        for m in range(n_m):
            dv = dp[k, m] - dgk[k, m]
            sum_Lm = np.sum(np.power(L[m, :], 2))
            norm = np.linalg.norm(sum_Lm * dv)**2

            emesh_ctrl += norm

    emesh_ctrl = emesh_ctrl / n_m
    print("emesh_ctrl =", emesh_ctrl)

    # compute e_mesh
    print("compute e_mesh")
    e_mesh_fn = e_mesh.get_eMesh()
    emesh = e_mesh_fn(dp)
    print("emesh =", emesh)