def middle_flow(self, data):
        block_num = self.bottleneck_params["middle_flow"][0]
        strides = self.bottleneck_params["middle_flow"][1]
        chns = self.bottleneck_params["middle_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("middle_flow"):
            for i in range(block_num):
                block_point = block_point + 1
                with scope("block" + str(i + 1)):
                    stride = strides[i] if check_stride(
                        s * strides[i], output_stride) else 1
                    data, short_cuts = self.xception_block(data,
                                                           chns[i],
                                                           [1, 1, strides[i]],
                                                           skip_conv=False)
                    s = s * stride
                    if check_points(block_point, self.decode_points):
                        self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data
Esempio n. 2
0
def gru_module(x, num_state, num_node):
    '''
    Global Reasoning Unit: projection --> graph reasoning --> reverse projection
    params:
         x:  B x C x H x W
         num_state: the dimension of each vertex feature
         num_node: the number of vertet
    output: B x C x H x W
    feature trans:
            B, C, H, W --> B, N, H, W -->             B, N, H*W -->B, N, C1 -->B, C1, N-->B, C1, N-->B, C1, H*W-->B, C, H, W
                       --> B, C1,H, W -->B, C1,H*W -->B, H*W, C1
    '''
    # generate B
    num_batch, C, H, W = x.shape
    with scope('projection'):
        B = conv(x,
                 num_node,
                 filter_size=1,
                 bias_attr=True,
                 name='projection' + '_conv')  #num_batch, node, H, W
        B = fluid.layers.reshape(
            B, shape=[num_batch, num_node,
                      H * W])  # Projection Matrix: num_batch, node, L=H*W
    # reduce dimension
    with scope('reduce_channel'):
        x_reduce = conv(x,
                        num_state,
                        filter_size=1,
                        bias_attr=True,
                        name='reduce_channel' +
                        '_conv')  #num_batch, num_state, H, W
        x_reduce = fluid.layers.reshape(x_reduce,
                                        shape=[num_batch, num_state, H * W
                                               ])  #num_batch, num_state, L
        x_reduce = fluid.layers.transpose(x_reduce,
                                          perm=[0, 2,
                                                1])  #num_batch, L, num_state

    V = fluid.layers.transpose(fluid.layers.matmul(B, x_reduce),
                               perm=[0, 2, 1])  #num_batch, num_state, num_node
    #L = fluid.layers.fill_constant(shape=[1], value=H*W, dtype='float32')
    #V = fluid.layers.elementwise_div(V, L)
    new_V = gcn_module('gru' + '_gcn', V, num_node, num_state)

    B = fluid.layers.reshape(B, shape=[num_batch, num_node, H * W])
    D = fluid.layers.transpose(B, perm=[0, 2, 1])
    Y = fluid.layers.matmul(D, fluid.layers.transpose(new_V, perm=[0, 2, 1]))
    Y = fluid.layers.transpose(Y, perm=[0, 2, 1])
    Y = fluid.layers.reshape(Y, shape=[num_batch, num_state, H, W])
    with scope('extend_dim'):
        Y = conv(Y,
                 C,
                 filter_size=1,
                 bias_attr=False,
                 name='extend_dim' + '_conv')
        #Y = bn_zero(Y)
        Y = bn(Y)
    out = fluid.layers.elementwise_add(Y, x)
    return out
 def xception_block(self,
                    input,
                    channels,
                    strides=1,
                    filters=3,
                    dilation=1,
                    skip_conv=True,
                    has_skip=True,
                    activation_fn_in_separable_conv=False):
     repeat_number = 3
     channels = check_data(channels, repeat_number)
     filters = check_data(filters, repeat_number)
     strides = check_data(strides, repeat_number)
     data = input
     results = []
     for i in range(repeat_number):
         with scope('separable_conv' + str(i + 1)):
             if not activation_fn_in_separable_conv:
                 data = relu(data)
                 data = separate_conv(data,
                                      channels[i],
                                      strides[i],
                                      filters[i],
                                      dilation=dilation)
             else:
                 data = separate_conv(data,
                                      channels[i],
                                      strides[i],
                                      filters[i],
                                      dilation=dilation,
                                      act=relu)
             results.append(data)
     if not has_skip:
         return data, results
     if skip_conv:
         param_attr = fluid.ParamAttr(
             name=name_scope + 'weights',
             regularizer=None,
             initializer=fluid.initializer.TruncatedNormal(loc=0.0,
                                                           scale=0.09))
         with scope('shortcut'):
             skip = bn(
                 conv(input,
                      channels[-1],
                      1,
                      strides[-1],
                      groups=1,
                      padding=0,
                      param_attr=param_attr))
     else:
         skip = input
     return data + skip, results
    def entry_flow(self, data):
        param_attr = fluid.ParamAttr(
            name=name_scope + 'weights',
            regularizer=None,
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.09))
        with scope("entry_flow"):
            with scope("conv1"):
                data = bn_relu(
                    conv(data,
                         32,
                         3,
                         stride=2,
                         padding=1,
                         param_attr=param_attr))
            with scope("conv2"):
                data = bn_relu(
                    conv(data,
                         64,
                         3,
                         stride=1,
                         padding=1,
                         param_attr=param_attr))

        # get entry flow params
        block_num = self.bottleneck_params["entry_flow"][0]
        strides = self.bottleneck_params["entry_flow"][1]
        chns = self.bottleneck_params["entry_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("entry_flow"):
            for i in range(block_num):
                block_point = block_point + 1
                with scope("block" + str(i + 1)):
                    stride = strides[i] if check_stride(
                        s * strides[i], output_stride) else 1
                    data, short_cuts = self.xception_block(
                        data, chns[i], [1, 1, stride])
                    s = s * stride
                    if check_points(block_point, self.decode_points):
                        self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data
Esempio n. 5
0
def glore(input, num_classes):
    """
    Reference:
       Chen, Yunpeng, et al. "Graph-Based Global Reasoning Networks", In CVPR 2019
    """

    # Backbone: ResNet
    res5, feat_dict = resnet(input)
    res4 = feat_dict[91]
    # 3x3 Conv. 2048 -> 512
    reduce_kernel = 3
    if cfg.DATASET.DATASET_NAME == 'cityscapes':
        reduce_kernel = 1
    with scope('feature'):
        feature = conv(res5,
                       512,
                       filter_size=reduce_kernel,
                       bias_attr=False,
                       name='feature_conv')
        feature = bn(feature, act='relu')
    # GRU Module
    gru_output = gru_module(feature, num_state=128, num_node=64)
    dropout = fluid.layers.dropout(gru_output,
                                   dropout_prob=0.1,
                                   name="dropout")

    logit = get_logit_interp(dropout, num_classes, input.shape[2:])
    if cfg.MODEL.GLORE.AuxHead:
        aux_logit = FCNHead(res4, 256, num_classes, input.shape[2:])
        return logit, aux_logit

    return logit
    def net(self,
            input,
            output_stride=32,
            num_classes=1000,
            end_points=None,
            decode_points=None):
        self.stride = 2
        self.block_point = 0
        self.output_stride = output_stride
        self.decode_points = decode_points
        self.short_cuts = dict()
        with scope(self.backbone):
            # Entry flow
            data = self.entry_flow(input)
            if check_points(self.block_point, end_points):
                return data, self.short_cuts

            # Middle flow
            data = self.middle_flow(data)
            if check_points(self.block_point, end_points):
                return data, self.short_cuts

            # Exit flow
            data = self.exit_flow(data)
            if check_points(self.block_point, end_points):
                return data, self.short_cuts

            data = fluid.layers.reduce_mean(data, [2, 3], keep_dim=True)
            data = fluid.layers.dropout(data, 0.5)
            stdv = 1.0 / math.sqrt(data.shape[1] * 1.0)
            with scope("logit"):
                out = fluid.layers.fc(
                    input=data,
                    size=num_classes,
                    act='softmax',
                    param_attr=fluid.param_attr.ParamAttr(
                        name='weights',
                        initializer=fluid.initializer.Uniform(-stdv, stdv)),
                    bias_attr=fluid.param_attr.ParamAttr(name='bias'))

            return out
    def exit_flow(self, data):
        block_num = self.bottleneck_params["exit_flow"][0]
        strides = self.bottleneck_params["exit_flow"][1]
        chns = self.bottleneck_params["exit_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        assert (block_num == 2)
        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("exit_flow"):
            with scope('block1'):
                block_point += 1
                stride = strides[0] if check_stride(s * strides[0],
                                                    output_stride) else 1
                data, short_cuts = self.xception_block(data, chns[0],
                                                       [1, 1, stride])
                s = s * stride
                if check_points(block_point, self.decode_points):
                    self.short_cuts[block_point] = short_cuts[1]
            with scope('block2'):
                block_point += 1
                stride = strides[1] if check_stride(s * strides[1],
                                                    output_stride) else 1
                data, short_cuts = self.xception_block(
                    data,
                    chns[1], [1, 1, stride],
                    dilation=2,
                    has_skip=False,
                    activation_fn_in_separable_conv=True)
                s = s * stride
                if check_points(block_point, self.decode_points):
                    self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data
Esempio n. 8
0
def get_logit_interp(input, num_classes, out_shape, name="logit"):
    # 1x1_Conv
    param_attr = fluid.ParamAttr(
        name=name + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))

    with scope(name):
        logit = conv(input,
                     num_classes,
                     filter_size=1,
                     param_attr=param_attr,
                     bias_attr=True,
                     name=name + '_conv')
        logit_interp = fluid.layers.resize_bilinear(logit,
                                                    out_shape=out_shape,
                                                    name=name + '_interp')
    return logit_interp
def PSPHead(input, out_features, num_classes, output_shape):
    # Arch of Pyramid Scene Parsing Module:
    #
    #          |----> Pool_1x1 + Conv_1x1 + BN + ReLU + bilinear_interp-------->|————————|
    #          |                                                                |        |
    #          |----> Pool_2x2 + Conv_1x1 + BN + ReLU + bilinear_interp-------->|        |
    # x ------>|                                                                | concat |----> Conv_3x3 + BN + ReLU -->Dropout --> Conv_1x1
    #     |    |----> Pool_3x3 + Conv_1x1 + BN + ReLU + bilinear_interp-------->|        |
    #     |    |                                                                |        |
    #     |    |----> Pool_6x6 + Conv_1x1 + BN + ReLU + bilinear_interp-------->|________|
    #     |                                                                              ^
    #     |——————————————————————————————————————————————————————————————————————————————|
    #
    cat_layers = []
    sizes = (1, 2, 3, 6)
    # 4 parallel pooling branches
    for size in sizes:
        psp_name = "psp" + str(size)
        with scope(psp_name):
            pool_feat = fluid.layers.adaptive_pool2d(input,
                                                     pool_size=[size, size],
                                                     pool_type='avg',
                                                     name=psp_name +
                                                     '_adapool')
            conv_feat = conv(pool_feat,
                             out_features,
                             filter_size=1,
                             bias_attr=True,
                             name=psp_name + '_conv')
            bn_feat = bn(conv_feat, act='relu')
            interp = fluid.layers.resize_bilinear(bn_feat,
                                                  out_shape=input.shape[2:],
                                                  name=psp_name + '_interp')
        cat_layers.append(interp)
    cat_layers = [input] + cat_layers[::-1]
    cat = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')

    # Conv_3x3 + BN + ReLU
    psp_end_name = "psp_end"
    with scope(psp_end_name):
        data = conv(cat,
                    out_features,
                    filter_size=3,
                    padding=1,
                    bias_attr=True,
                    name=psp_end_name)
        out = bn(data, act='relu')
    # Dropout
    dropout_out = fluid.layers.dropout(out, dropout_prob=0.1, name="dropout")

    # Conv_1x1 + bilinear_upsample
    seg_name = "logit"
    with scope(seg_name):
        param_attr = fluid.ParamAttr(
            name=seg_name + '_weights',
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0),
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
        logit = conv(dropout_out,
                     num_classes,
                     filter_size=1,
                     param_attr=param_attr,
                     bias_attr=True,
                     name=seg_name + '_conv')
        logit_interp = fluid.layers.resize_bilinear(logit,
                                                    out_shape=output_shape,
                                                    name=seg_name + '_interp')

    return logit_interp
def ASPPHead(input, mid_channel, num_classes, output_shape):
    # Arch of Atorus Spatial Pyramid Pooling Module:                                                 
    #
    #          |----> ImagePool + Conv_1x1 + BN + ReLU + bilinear_interp-------->|————————|
    #          |                                                                 |        |
    #          |---->           Conv_1x1 + BN + ReLU                    -------->|        | 
    #          |                                                                 |        |
    #   x----->|---->        AtrousConv_3x3 + BN + ReLU                 -------->| concat |----> Conv_1x1 + BN + ReLU -->Dropout --> Conv_1x1 
    #          |                                                                 |        |
    #          |---->        AtrousConv_3x3 + BN + ReLU                 -------->|        |
    #          |                                                                 |        |
    #          |---->        AtorusConv_3x3 + BN + ReLU                 -------->|________|
    #                                                                                    
    #

    if cfg.MODEL.BACKBONE_OUTPUT_STRIDE == 16:
        aspp_ratios = [6, 12, 18]
    elif cfg.MODEL.BACKBONE_OUTPUT_STRIDE == 8:
        aspp_ratios = [12, 24, 36]
    else:
        raise Exception("deeplab only support stride 8 or 16")

    param_attr = fluid.ParamAttr(name=name_scope + 'weights', regularizer=None,
                                 initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
    with scope('ASPPHead'):
        with scope("image_pool"):
            image_avg = fluid.layers.reduce_mean( input, [2, 3], keep_dim=True)
            image_avg = bn_relu( conv( image_avg, mid_channel, 1, 1, groups=1, padding=0, param_attr=param_attr))
            image_avg = fluid.layers.resize_bilinear(image_avg, input.shape[2:])

        with scope("aspp0"):
            aspp0 = bn_relu( conv( input, mid_channel, 1, 1, groups=1, padding=0, param_attr=param_attr))
        with scope("aspp1"):
            if cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV:
                aspp1 = separate_conv( input, mid_channel, 1, 3, dilation=aspp_ratios[0], act=relu)
            else:
                aspp1 = bn_relu( conv( input, mid_channel, stride=1, filter_size=3, dilation=aspp_ratios[0], 
                                       padding=aspp_ratios[0], param_attr=param_attr))
        with scope("aspp2"):
            if cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV:
                aspp2 = separate_conv( input, mid_channel, 1, 3, dilation=aspp_ratios[1], act=relu)
            else:
                aspp2 = bn_relu( conv( input, mid_channel, stride=1, filter_size=3, dilation=aspp_ratios[1], 
                                       padding=aspp_ratios[1], param_attr=param_attr))
        with scope("aspp3"):
            if cfg.MODEL.DEEPLAB.ASPP_WITH_SEP_CONV:
                aspp3 = separate_conv( input, mid_channel, 1, 3, dilation=aspp_ratios[2], act=relu)
            else:
                aspp3 = bn_relu( conv( input, mid_channel, stride=1, filter_size=3, dilation=aspp_ratios[2],
                                       padding=aspp_ratios[2], param_attr=param_attr))
        with scope("concat"):
            feat = fluid.layers.concat([image_avg, aspp0, aspp1, aspp2, aspp3], axis=1)
            feat = bn_relu( conv( feat, 2*mid_channel, 1, 1, groups=1, padding=0, param_attr=param_attr))
            feat = fluid.layers.dropout(feat, 0.1)

    # Conv_1x1 + bilinear_upsample
    seg_name = "logit"
    with scope(seg_name):
        param_attr = fluid.ParamAttr( name= seg_name+'_weights',
                                      regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0),
                                      initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
        logit = conv(feat, num_classes, filter_size=1, param_attr=param_attr, bias_attr=True, name=seg_name+'_conv')
        logit_interp = fluid.layers.resize_bilinear(logit, out_shape=output_shape, name=seg_name+'_interp')

    return logit_interp