def train_lstm_anger(): vocab_size, trainds, valds, testds, traindl, valdl, testdl = load_uncased_data( 'anger') final_stats_anger = [] for dropout in [0.1, 0.2, 0.3, 0.4, 0.5]: for hidden_size in [25, 50, 75, 100, 125, 150, 175, 200]: for lr in [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]: model = LSTMClassifier( vocab_size, 200, hidden_size, 4, trainds.fields['Clean_Tweet'].vocab.vectors, dropout=dropout, bidirectional=False) training_stats = train(model, traindl, valdl, lr=lr, hidden_size=hidden_size, dropout=dropout) final_stats_anger.extend(training_stats) pd.DataFrame(final_stats_anger).to_csv( './data/models/lstm/results/anger.csv')
def train_bilstm_sadness(): vocab_size, trainds, valds, testds, traindl, valdl, testdl = load_uncased_data('sadness') final_stats_sadness = [] for dropout in [0.1, 0.2, 0.3, 0.4, 0.5]: for hidden_size in [32, 64, 96, 128]: for lr in [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]: model = LSTMClassifier( vocab_size, 200, hidden_size, 4, trainds.fields['Clean_Tweet'].vocab.vectors, dropout=dropout, bidirectional=False ) training_stats = train(model, traindl, valdl, lr=lr, hidden_size=hidden_size, dropout=dropout) final_stats_sadness.extend(training_stats) pd.DataFrame(final_stats_sadness).to_csv('./data/models/bilstm/results/sadness.csv')