def _loadRatings(self, sc, data_file):
		data = sc.textFile(data_file)
		data_dict, data_triplet = format_triplets(data)
		data_triplet = by_max_count(data_triplet)
		num_ratings = data_triplet.count()
		num_users = data_triplet.map(lambda r: r[0]).distinct().count()
		num_songs = data_triplet.map(lambda r: r[1]).distinct().count()
		print(100 * '//')
		print("Got {} ratings, with {} distinct songs and {} distinct users".format(num_ratings,
        	                                                                        num_users,
            	                                                                    num_songs))
		print(100 * '//')
		train_ratings = data_triplet.map(lambda l: Rating(l[0], l[1], l[2]))
		return train_ratings
def get_ratings(sc, data_file):

    data = sc.textFile(data_file)
    # #             Normalize start         # #
    print('Training normalization started')
    data_dict, data_triplet = format_triplets(data)
    data_triplet = by_max_count(data_triplet)
    print(' Training normalization ended')
    # #             Normalize end           # #
    num_ratings = data_triplet.count()
    num_users = data_triplet.map(lambda r: r[0]).distinct().count()
    num_songs = data_triplet.map(lambda r: r[1]).distinct().count()
    print(100 * '//')
    print("Got {} ratings, with {} distinct songs and {} distinct users".format(num_ratings,
                                                                                num_users,
                                                                                num_songs))
    print(100 * '//')
    train_ratings = data_triplet.map(lambda l: Rating(l[0], l[1], l[2]))
    return train_ratings
def get_ratings(sc, data_file):

    data = sc.textFile(data_file)
    # #             Normalize start         # #
    print('Training normalization started')
    data_dict, data_triplet = format_triplets(data)
    data_triplet = by_max_count(data_triplet)
    print(' Training normalization ended')
    # #             Normalize end           # #
    num_ratings = data_triplet.count()
    num_users = data_triplet.map(lambda r: r[0]).distinct().count()
    num_songs = data_triplet.map(lambda r: r[1]).distinct().count()
    print(100 * '//')
    print(
        "Got {} ratings, with {} distinct songs and {} distinct users".format(
            num_ratings, num_users, num_songs))
    print(100 * '//')
    train_ratings = data_triplet.map(lambda l: Rating(l[0], l[1], l[2]))
    return train_ratings