Esempio n. 1
0
def plot_users_trail(users, signals, cells, save_pic=False, save_trails_js=False):
    '''
    save users' trail plot or save users' trail js file
    :param users: users id array
    :param signals: signals
    :param cells: get_cells
    :param save_pic: Boolean Whether to save the trail plot
    :param save_trails_js: Boolean Whether to save the trail js file
    :return:
    '''
    n = len(users)
    for i in range(n):
        if save_pic & save_trails_js:
            break
        user_id = users[i]
        signal = signals[signals.user_id == user_id]
        signal = signal.sort_values('dates')
        signal = pd.merge(signal, cells, on='cell_id', how='left')
        signal = signal.dropna(0)
        print('user %d' % i)
        if save_pic:
            plt.plot(signal.lon, signal.lat)
            plt.savefig('../../pic/%.2d%.2d/%.2dt%.2d/pic%d.jpg' % (mon, dd, hh_start, hh_end, i))
            plt.close('all')
        if save_trails_js:
            output_data_js(signal, '../../web/data/%.2d%.2d/%.2dt%.2d/user%d.js' % (mon, dd, hh_start, hh_end, i))
Esempio n. 2
0
def output_pre_road_data(trail,
                         direction,
                         n,
                         type='cell',
                         interpolate_interval=1,
                         smoothing=0,
                         penalty=0.9,
                         direction_window=15):
    '''
    Output predicted road data with CTrack. For test wuhu data.
    :param trail: <Int> The i_th trail
    :param direction: <-1/1> -1 means reverse side; 1 means front.
    :param n: The n_th test of this trail. If None, return all the tests of the trail.
    :param type: 'cell' or 'GPS'. See details in function get_obs_data.
    :param interpolate_interval: Interval seconds of processed observables. Default = 1.
    :param smoothing: Window length of smoothing. If smoothing == 0, do not smooth.
    :param penalty:
    :param direction_window:
    :return: None.
    '''
    df = get_road_tests(trail, direction, n)
    graph = get_graph('../../data/road_test/link_baidu_wuhu.txt')
    obs = get_obs_data(df, type=type)
    track = CTrack(obs,
                   graph,
                   smoothing=smoothing,
                   interpolate_interval=interpolate_interval,
                   penalty=penalty,
                   direction_window=direction_window)
    states = track.viterbi()
    direction = u'正向' if direction == 1 else u'反向'
    output_data_js(
        states,
        '../../res/MapMatching_test/pre_%s/wuhu_pre_线路%d_%s%d_smoothing=%d_window=%d.js'
        % (type, trail, direction, n, smoothing, interpolate_interval))
Esempio n. 3
0
def plot_users_trail(file_date,
                     save_pic=True,
                     save_trails_js=True,
                     save_data=True,
                     save_dir=work_dir + 'attach/'):
    '''
    save users' trail plot or save users' trail js file
    :param users: users id array
    :param signals: signals
    :param cells: get_cells
    :param save_pic: Boolean Whether to save the trail plot
    :param save_trails_js: Boolean Whether to save the trail js file
    :return:
    '''

    cells = pd.read_csv('../../res/[0926]cells_process.csv')
    cells_loc = cells[['cell_id', 'lat', 'lon']]

    dirs = [save_dir + 'user_pic/', save_dir + 'user_trail/']

    signals = get_signals_from_csv(save_dir + 'user_data' + file_date + '.csv')

    labels = list(pd.read_csv(save_dir + 'user_pic/random_user.csv').user_id)
    users = [x.split('@')[0] for x in labels]

    n = len(users)
    for i in range(n):
        # if save_pic & save_trails_js:
        #     break
        user_id = users[i]
        signal = signals[signals.user_id == user_id]
        signal = signal.sort_values('dates')
        signal = pd.merge(signal, cells, on='cell_id', how='left')
        signal = signal.dropna(0)
        print('user %d' % i)
        if save_pic:
            plt.plot(signal.lon, signal.lat)
            plt.savefig('%suser_trail_%s/pic/user%d.jpg' %
                        (save_dir, file_date, i))
            plt.close('all')
        if save_data:
            signal.to_csv('%suser_trail_%s/csv/user%d.csv' %
                          (save_dir, file_date, i),
                          index=False)
        if save_trails_js:
            output_data_js(
                signal,
                '%suser_trail_%s/data/user%d.js' % (save_dir, file_date, i))
Esempio n. 4
0
def output_obs_data(trail,
                    direction,
                    n,
                    type='cell',
                    interpolate_interval=5,
                    smoothing=20,
                    interpolate=True):
    '''
    Output observables data after pre-processing. For test wuhu data
    :param trail: <Int> The i_th trail
    :param direction: <-1/1> -1 means reverse side; 1 means front.
    :param n: The n_th test of this trail. If None, return all the tests of the trail.
    :param type: 'cell' or 'GPS'. See details in function get_obs_data.
    :param interpolate_interval: Interval seconds of processed observables. Default = 1.
    :param smoothing: Window length of smoothing. If smoothing == 0, do not smooth.
    :param interpolate:
    :return: None.
    '''
    df = get_road_tests(trail, direction, n)
    graph = get_graph('../../data/road_test/link_baidu_wuhu.txt')
    obs = get_obs_data(df, type=type)
    track = CTrack(obs,
                   graph,
                   smoothing=smoothing,
                   interpolate_interval=interpolate_interval,
                   interpolate=interpolate)
    out = track.obs
    out['dates'] = out.time
    direction = u'正向' if direction == 1 else u'反向'
    if interpolate:
        output_data_js(
            out,
            '../../res/MapMatching_test/processed_%s/wuhu_线路%d_%s%d_smoothing=%d_window=%d.js'
            % (type, trail, direction, n, smoothing, interpolate_interval))
    else:
        output_data_js(
            out, '../../res/MapMatching_test/raw_%s/wuhu_线路%d_%s%d.js' %
            (type, trail, direction, n))
Esempio n. 5
0
 def plot_users_trail(self,
                      users=None,
                      within_users=True,
                      save_pic=False,
                      save_trails_js=False):
     '''
     save users' trail plot or save users' trail js file
     :param users: users id array. If users is None, it will plot all the users. Default = None
     :param within_users: read signals within users or not. Default = True
     :param save_pic: Boolean Whether to save the trail plot
     :param save_trails_js: Boolean Whether to save the trail js file
     :return:
     '''
     cells = pd.read_csv('../../res/[0926]cells_process.csv')
     signals = self.get_clean_signals(within_users)
     if users is None:
         users = signals.user_id.unique()
     n = len(users)
     for i in range(n):
         if not (save_pic | save_trails_js):
             break
         user_id = users[i]
         signal = signals[signals.user_id == user_id]
         signal = signal.sort_values('dates')
         signal = pd.merge(signal, cells, on='cell_id', how='left')
         signal = signal.dropna(0)
         print('user %d' % i)
         if save_pic:
             self.check_dir(self.plot_dir)
             plt.plot(signal.lon, signal.lat)
             plt.title('user = %s' % user_id)
             plt.savefig('%s/pic%d.jpg' % (self.plot_dir, i))
             plt.close('all')
         if save_trails_js:
             self.check_dir(self.js_dir)
             output_data_js(signal, user_id,
                            '%s/user%d.js' % (self.js_dir, i))
Esempio n. 6
0
def single_map_matching(obs,
                        graph,
                        save_name,
                        mm_smoothing=10,
                        mm_interpolate_interval=10,
                        save_dir='../../res/work/0417_multi_mm/'):
    output_data_js(obs, save_dir + save_name + '_raw.js')
    track = CTrack(obs,
                   graph,
                   smoothing=mm_smoothing,
                   interpolate_interval=mm_interpolate_interval)
    output_data_js(track.obs, save_dir + save_name + '_processed.js')
    states = track.viterbi()
    output_data_js(states, save_dir + save_name + '.js')
    return states
Esempio n. 7
0
def multi_map_matching(obses,
                       graph,
                       save_name,
                       mdtw_interval=5,
                       mm_smoothing=10,
                       mm_interpolate_interval=10,
                       save_dir='../../res/work/0417_multi_mm/'):
    mdtw = MultiDTWIndx(obses, interval=mdtw_interval)
    new_obs = mdtw.run_one_by_one()
    print(new_obs)
    output_data_js(new_obs, save_dir + save_name + '_raw.js')
    track = CTrack(new_obs,
                   graph,
                   smoothing=mm_smoothing,
                   interpolate_interval=mm_interpolate_interval)
    output_data_js(track.obs, save_dir + save_name + '_processed.js')
    states = track.viterbi()
    output_data_js(states, save_dir + save_name + '.js')
    return states
Esempio n. 8
0
    graph = get_graph('../../data/hefei_road/link_baidu.txt')
    user_id = users[10]
    signal, ind_sets, signal_sets = get_trajectory(signals, cells_loc, user_id)
    print(cal_rough_speed_per_cell2(signal))
    for i in range(len(signal_sets)):
        if i != 1: continue
        obs = pd.DataFrame({
            'time': signal_sets[i]['dates'],
            'lon': signal_sets[i]['lon'],
            'lat': signal_sets[i]['lat']
        })
        # print(obs)
        obs = deal_same_obs(obs)[0:8]
        check_directory('../../res/MapMatching/%s' % user_id)
        output_data_js(
            obs, '../../res/MapMatching/%s/raw_trajectory%d.js' % (user_id, i))
        obs = deal_outlier(obs)
        speed = cal_rough_speed_per_cell2(obs)
        print(speed)
        print([
            abs(speed['direction'][i] - speed['direction'][i - 1])
            for i in range(1, len(speed))
        ])
        track = CTrack(obs, graph, smoothing=20, interpolate_interval=5)
        out = track.obs
        states = track.viterbi()
        track.plot_each_time_best_trajectory(track.delta)
        # print(cal_rough_speed_per_cell2(states))
        output_data_js(
            out, '../../res/MapMatching/%s/pre_trajectory%d.js' % (user_id, i))
        output_data_js(