Esempio n. 1
0
    def learn(self,
              train_x: np.ndarray,
              train_y: np.ndarray,
              test_x: np.ndarray,
              test_y: np.ndarray,
              n_epochs: int,
              batch_size: int,
              h_si_len: int = 1):
        self.h_lin = fd.ls_estimation(train_x, train_y, h_si_len)
        yCanc = fd.si_cancellation_linear(
            train_x, self.h_lin.flatten(order='F')).reshape((-1, 1), order='F')

        y_train = train_y.reshape((-1, 1), order='F') - yCanc
        self.yVar = np.var(y_train)
        y_train = y_train / np.sqrt(self.yVar)

        x_1 = np.vstack((np.zeros(
            (h_si_len - 1, 1)), train_x.reshape((-1, 1), order='F')))
        x_train = np.array([x_1[i:i + h_si_len] for i in range(train_x.size)
                            ]).reshape(train_x.size, h_si_len)

        # NNの入力に合うように1つのベクトルにする
        train = np.zeros((x_train.shape[0], (2 * h_si_len)))
        train[:, 0:(h_si_len)] = x_train.real
        train[:, (h_si_len):(2 * h_si_len)] = x_train.imag

        # テストデータの作成
        yCanc = fd.si_cancellation_linear(test_x,
                                          self.h_lin.flatten('F')).reshape(
                                              (-1, 1), order='F')
        y_test = test_y.reshape((-1, 1)) - yCanc
        y_test = y_test / np.sqrt(self.yVar)

        x_1 = np.vstack((np.zeros(
            (h_si_len - 1, 1)), test_x.reshape((-1, 1), order='F')))
        x_test = np.array([x_1[i:i + h_si_len] for i in range(test_x.size)
                           ]).reshape(test_x.size, h_si_len)

        test = np.zeros((x_test.shape[0], (2 * h_si_len)))
        test[:, 0:(h_si_len)] = x_test.real
        test[:, (h_si_len):(2 * h_si_len)] = x_test.imag

        # 学習
        self.history = self.model.fit(
            train, [y_train.real, y_train.imag],
            epochs=n_epochs,
            batch_size=batch_size,
            verbose=0,
            validation_data=(test, [y_test.real, y_test.imag]))
Esempio n. 2
0
def lin_cancel_simulation(params: dict, sigma, h_si, h_s) -> np.ndarray:
    system_model = PreviousSystemModel(
        sigma, params['gamma'], params['phi'], params['PA_IBO_dB'],
        params['PA_rho'], params['LNA_IBO_dB'], params['LNA_rho'], h_si,
        params['h_si_len'], h_s, params['h_s_len'], params['TX_IQI'],
        params['PA'], params['LNA'], params['RX_IQI'])

    system_model.set_lna_a_sat(
        params['lin_n'],
        params['LNA_IBO_dB'],
    )

    system_model.transceive_si(params['lin_n'])

    h_lin = fd.ls_estimation(system_model.x[0:int(params['lin_n'] / 2)],
                             system_model.y, params['h_si_len'])

    system_model.transceive_si_s(params['lin_n'], )

    yCanc = fd.si_cancellation_linear(
        system_model.x[0:int(params['lin_n'] / 2)], h_lin)
    cancelled_y = system_model.y - yCanc
    s_hat = cancelled_y * h_s.conj() / (np.abs(h_s)**2)

    d_hat = m.demodulate_qpsk(s_hat)
    d_hat_len = d_hat.shape[0]
    error = np.sum(system_model.d_s[0:d_hat_len] != d_hat)

    return error
Esempio n. 3
0
    def cancel(self, x: np.ndarray, h_si_len):
        self.y_canc_lin = fd.si_cancellation_linear(
            x, self.h_lin.flatten('F')).reshape((1, -1), order='F')

        x_1 = np.vstack((np.zeros(
            (h_si_len - 1, 1)), x.reshape((-1, 1), order='F')))
        nn_x = np.array([x_1[i:i + h_si_len]
                         for i in range(x.size)]).reshape(x.size, h_si_len)

        # NNの入力に合うように1つのベクトルにする
        x_pred = np.zeros((nn_x.shape[0], (2 * h_si_len)))
        x_pred[:, 0:(h_si_len)] = nn_x.real
        x_pred[:, (h_si_len):(2 * h_si_len)] = nn_x.imag

        # 学習したモデルを評価
        self.pred = self.model.predict(x_pred)
        self.y_canc_non_lin = np.squeeze(self.pred[0] + 1j * self.pred[1],
                                         axis=1)

        self.y_hat = self.y_canc_lin + (np.sqrt(self.yVar) *
                                        self.y_canc_non_lin)
Esempio n. 4
0
    def cancel(self, x: np.ndarray, y: np.ndarray, chanLen: int):
        # Prepare test data for NN
        x_real = np.reshape(
            np.array([x[i:i + chanLen].real for i in range(x.size - chanLen)]),
            (x.size - chanLen, chanLen))
        x_imag = np.reshape(
            np.array([x[i:i + chanLen].imag for i in range(x.size - chanLen)]),
            (x.size - chanLen, chanLen))
        x_pred = np.zeros((x.size - chanLen, 2 * chanLen))
        x_pred[:, 0:chanLen] = x_real
        x_pred[:, chanLen:2 * chanLen] = x_imag

        # Normalize data for NN
        yCanc = fd.si_cancellation_linear(x, self.h_lin)
        y_lin_canc = y - yCanc
        y_lin_canc = y_lin_canc / np.sqrt(self.yVar)

        self.pred = self.model.predict(x_pred)
        self.y_canc_non_lin = np.squeeze(self.pred[0] + 1j * self.pred[1],
                                         axis=1)

        self.cancelled_y = y_lin_canc[0:self.y_canc_non_lin.
                                      shape[0]] - self.y_canc_non_lin
Esempio n. 5
0
    def learn(self, x: np.ndarray, y: np.ndarray, training_ratio: float,
              chanLen: int, epochs: int, batch_size: int):
        training_samples = int(np.floor(x.size * training_ratio))
        x_train = x[0:training_samples]
        y_train = y[0:training_samples]
        x_test = x[training_samples:]
        y_test = y[training_samples:]

        # Step 1: Estimate linear cancellation arameters and perform linear cancellation
        self.h_lin = fd.ls_estimation(x_train, y_train, chanLen)
        yCanc = fd.si_cancellation_linear(x_train, self.h_lin)

        # Normalize data for NN
        y_train = y_train - yCanc
        self.yVar = np.var(y_train)
        y_train = y_train / np.sqrt(self.yVar)

        # Prepare training data for NN
        x_train_real = np.reshape(
            np.array([
                x_train[i:i + chanLen].real
                for i in range(x_train.size - chanLen)
            ]), (x_train.size - chanLen, chanLen))
        x_train_imag = np.reshape(
            np.array([
                x_train[i:i + chanLen].imag
                for i in range(x_train.size - chanLen)
            ]), (x_train.size - chanLen, chanLen))
        x_train = np.zeros((x_train.size - chanLen, 2 * chanLen))
        x_train[:, 0:chanLen] = x_train_real
        x_train[:, chanLen:2 * chanLen] = x_train_imag
        y_train = np.reshape(y_train[chanLen:], (y_train.size - chanLen, 1))

        # Prepare test data for NN
        yCanc = fd.si_cancellation_linear(x_test, self.h_lin)
        y_test = y_test - yCanc
        y_test = y_test / np.sqrt(self.yVar)

        x_test_real = np.reshape(
            np.array([
                x_test[i:i + chanLen].real
                for i in range(x_test.size - chanLen)
            ]), (x_test.size - chanLen, chanLen))
        x_test_imag = np.reshape(
            np.array([
                x_test[i:i + chanLen].imag
                for i in range(x_test.size - chanLen)
            ]), (x_test.size - chanLen, chanLen))
        x_test = np.zeros((x_test.size - chanLen, 2 * chanLen))
        x_test[:, 0:chanLen] = x_test_real
        x_test[:, chanLen:2 * chanLen] = x_test_imag
        y_test = np.reshape(y_test[chanLen:], (y_test.size - chanLen, 1))

        ##### Training #####
        # Step 2: train NN to do non-linear cancellation
        self.history = self.model.fit(
            x_train, [y_train.real, y_train.imag],
            epochs=epochs,
            batch_size=batch_size,
            verbose=0,
            validation_data=(x_test, [y_test.real, y_test.imag]))
Esempio n. 6
0
                params['h_s_len'],
            )

            system_model.set_lna_a_sat(
                params['n'],
                params['LNA_IBO_dB'],
            )

            system_model.transceive_si(params['n'])

            h_lin = fd.ls_estimation(system_model.x[0:int(params['n'] / 2)],
                                     system_model.y, params['h_si_len'])

            system_model.transceive_si_s(params['n'], )

            yCanc = fd.si_cancellation_linear(
                system_model.x[0:int(params['n'] / 2)], h_lin)
            cancelled_y = system_model.y - yCanc
            s_hat = cancelled_y * h_s.conj() / (np.abs(h_s)**2)

            d_hat = m.demodulate_qpsk(s_hat)
            d_hat_len = d_hat.shape[0]
            error = np.sum(system_model.d_s[0:d_hat_len] != d_hat)

            error_array[sigma_index][trials_index] = error

    result = Result(params, error_array, None, None)
    with open(output_dir + '/result.pkl', 'wb') as f:
        pickle.dump(result, f)

    ber_fig, ber_ax = graph.new_snr_ber_canvas(params['SNR_MIN'],
                                               params['SNR_MAX'])