def main(): args = vars(parser.parse_args()) check_args(args) set_seeds(2020) data_cfg = config.DataConfig(args["data_config"]) model_cfg = config.ModelConfig(args["model_config"]) run_cfg = config.RunConfig(args["run_config"], eval=True) output, save_prefix = set_output(args, "evaluate_model_log") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output) torch.zeros((1)).to(device) ## Loading datasets start = Print(" ".join(['start loading datasets']), output) dataset_idxs, datasets, iterators = data_cfg.path.keys(), [], [] for idx in dataset_idxs: dataset = get_dataset_from_configs(data_cfg, idx) iterator = torch.utils.data.DataLoader(dataset, run_cfg.batch_size, shuffle=False, pin_memory=True, num_workers=4) datasets.append(dataset) iterators.append(iterator) end = Print(" ".join(['loaded', str(len(dataset)), idx, 'samples']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) model, params = get_model(model_cfg, data_cfg.with_esa) end = Print('end initializing a model', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) trainer = Trainer(model) trainer.load_model(args["checkpoint"], output) trainer.set_device(device) end = Print('end setting trainer configurations', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## evaluate a model start = Print('start evaluating a model', output) ### validation for idx, dataset, iterator in zip(dataset_idxs, datasets, iterators): Print(" ".join(['processing', idx]), output) ### validation for B, batch in enumerate(iterator): trainer.evaluate(batch, device) if B % 5 == 0: print('# {} {:.1%}'.format(idx, B / len(iterator)), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### save outputs trainer.aggregate(dataset.set_labels) trainer.save_outputs(idx, save_prefix) end = Print('end evaluating a model', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) if not output == sys.stdout: output.close()
def main(): args = vars(parser.parse_args()) check_args(args) set_seeds(2021) data_cfg = config.DataConfig(args["data_config"]) model_cfg = config.ModelConfig(args["model_config"]) run_cfg = config.RunConfig(args["run_config"], eval=True, sanity_check=args["sanity_check"]) output, save_prefix = set_output(args, "evaluate_model_log") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output) torch.zeros((1)).to(device) ## Loading a dataset start = Print(" ".join(['start loading a dataset']), output) dataset_test = get_dataset_from_configs(data_cfg, "test", model_cfg.embedder, sanity_check=args["sanity_check"]) iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size, shuffle=False, pin_memory=True, num_workers=4) end = Print( " ".join(['loaded', str(len(dataset_test)), 'dataset_test samples']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) model, params = get_model(model_cfg, run_cfg) get_profile(model, dataset_test, output) end = Print('end initializing a model', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) trainer = Trainer(model) trainer.load_model(args["checkpoint"], output) trainer.set_device(device) end = Print('end setting trainer configurations', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## evaluate a model start = Print('start evaluating a model', output) trainer.headline(output) ### validation for B, batch in enumerate(iterator_test): trainer.evaluate(batch, device) if B % 5 == 0: print('# {:.1%}'.format(B / len(iterator_test)), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### print log trainer.save_outputs(save_prefix) trainer.log(data_cfg.data_idx, output) end = Print('end evaluating a model', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) if not output == sys.stdout: output.close()
def main(): set_seeds(2020) args = vars(parser.parse_args()) alphabet = Protein() cfgs = [] data_cfg = config.DataConfig(args["data_config"]) cfgs.append(data_cfg) if args["lm_model_config"] is None: model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=1) cfgs += [model_cfg] else: lm_model_cfg = config.ModelConfig(args["lm_model_config"], idx="lm_model_config", input_dim=len(alphabet)) model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), lm_dim=lm_model_cfg.num_layers * lm_model_cfg.hidden_dim * 2, num_classes=1) cfgs += [model_cfg, lm_model_cfg] if model_cfg.model_type == "RNN": pr_model_cfg = config.ModelConfig(args["pr_model_config"], idx="pr_model_config", model_type="MLP", num_classes=1) if pr_model_cfg.projection: pr_model_cfg.set_input_dim(model_cfg.embedding_dim) else: pr_model_cfg.set_input_dim(model_cfg.hidden_dim * 2) cfgs.append(pr_model_cfg) run_cfg = config.RunConfig(args["run_config"], sanity_check=args["sanity_check"]) cfgs.append(run_cfg) output, save_prefix = set_output(args, "eval_stability_log", test=True) os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[ "device"] is not None else "" device, data_parallel = torch.device("cuda" if torch.cuda.is_available( ) else "cpu"), torch.cuda.device_count() > 1 config.print_configs(args, cfgs, device, output) flag_rnn = (model_cfg.model_type == "RNN") flag_lm_model = (args["lm_model_config"] is not None) ## load test datasets start = Print( " ".join(['start loading a test dataset', data_cfg.path["test"]]), output) dataset_test = ss.load_stability(data_cfg, "test", alphabet, args["sanity_check"]) dataset_test = dataset.Seq_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len) collate_fn = dataset.collate_sequences if flag_rnn else None iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size_eval, collate_fn=collate_fn) end = Print(" ".join(['loaded', str(len(dataset_test)), 'sequences']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) models_list = [ ] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight] ### model if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg) elif not flag_lm_model: model = plus_rnn.PLUS_RNN(model_cfg) else: model = p_elmo.P_ELMo(model_cfg) models_list.append([model, "", flag_lm_model, flag_rnn, False]) ### lm_model if flag_lm_model: lm_model = p_elmo.P_ELMo_lm(lm_model_cfg) models_list.append([lm_model, "lm", True, False, False]) ### pr_model if flag_rnn: pr_model = mlp.MLP(pr_model_cfg, per_seq=True) models_list.append([pr_model, "pr", False, True, False]) params, pr_params = [], [] for model, idx, frz, _, _ in models_list: if frz: continue elif idx != "pr": params += [p for p in model.parameters() if p.requires_grad] else: pr_params += [p for p in model.parameters() if p.requires_grad] load_models(args, models_list, device, data_parallel, output, tfm_cls=flag_rnn) get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss end = Print('end initializing a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) tasks_list = [] # list of lists [idx, metrics_train, metrics_eval] tasks_list.append(["cls", [], ["rho", "r"]]) if not flag_lm_model: tasks_list.append(["lm", [], ["acc"]]) trainer = Trainer(models_list, get_loss, run_cfg, tasks_list) trainer_args = {} trainer_args["data_parallel"] = data_parallel trainer_args["paired"] = False if flag_rnn: trainer_args["projection"] = pr_model_cfg.projection trainer_args["regression"] = True if flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_cls_protein else: trainer_args["evaluate_cls"] = plus_tfm.evaluate_cls_protein end = Print('end setting trainer configurations', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## evaluate a model start = Print('start evaluating a model', output) Print(trainer.get_headline(test=True), output) ### evaluate cls dataset_test.set_augment(False) trainer.set_exec_flags(["cls", 'lm'], [True, False]) for b, batch in enumerate(iterator_test): batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format(b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate lm if not flag_lm_model: dataset_test.set_augment(True) trainer.set_exec_flags(["cls", 'lm'], [False, True]) for b, batch in enumerate(iterator_test): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format(b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) Print(trainer.get_log(test_idx="Stability", args=trainer_args), output) trainer.reset() end = Print('end evaluating a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) output.close()
def main(): set_seeds(2020) args = vars(parser.parse_args()) alphabet = Protein() cfgs = [] data_cfg = config.DataConfig(args["data_config"]) cfgs.append(data_cfg) if args["lm_model_config"] is None: model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=3) cfgs += [model_cfg] else: lm_model_cfg = config.ModelConfig(args["lm_model_config"], idx="lm_model_config", input_dim=len(alphabet)) model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), lm_dim=lm_model_cfg.num_layers * lm_model_cfg.hidden_dim * 2, num_classes=3) cfgs += [model_cfg, lm_model_cfg] if model_cfg.model_type == "RNN": pr_model_cfg = config.ModelConfig(args["pr_model_config"], idx="pr_model_config", model_type="MLP", num_classes=3) if pr_model_cfg.projection: pr_model_cfg.set_input_dim(model_cfg.embedding_dim) else: pr_model_cfg.set_input_dim(model_cfg.hidden_dim * 2) cfgs.append(pr_model_cfg) run_cfg = config.RunConfig(args["run_config"], sanity_check=args["sanity_check"]) cfgs.append(run_cfg) output, save_prefix = set_output(args, "train_transmembrane_log") os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[ "device"] is not None else "" device, data_parallel = torch.device("cuda" if torch.cuda.is_available( ) else "cpu"), torch.cuda.device_count() > 1 config.print_configs(args, cfgs, device, output) flag_rnn = (model_cfg.model_type == "RNN") flag_lm_model = (args["lm_model_config"] is not None) flag_lm_loss = (run_cfg.lm_loss_lambda != -1) ## load a train dataset start = Print( " ".join(['start loading train datasets', data_cfg.path["train"]]), output) dataset_train = transmembrane.load_transmembrane(data_cfg, "train", alphabet, args["sanity_check"]) dataset_train = dataset.Seq_dataset(*dataset_train, alphabet, run_cfg, flag_rnn, model_cfg.max_len, truncate=False) collate_fn = dataset.collate_sequences if flag_rnn else None iterator_train = torch.utils.data.DataLoader(dataset_train, run_cfg.batch_size_train, collate_fn=collate_fn, shuffle=True) end = Print(" ".join(['loaded', str(len(dataset_train)), 'sequences']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## load a dev dataset start = Print( " ".join(['start loading dev datasets', data_cfg.path["dev"]]), output) dataset_dev = transmembrane.load_transmembrane(data_cfg, "dev", alphabet, args["sanity_check"]) dataset_dev = dataset.Seq_dataset(*dataset_dev, alphabet, run_cfg, flag_rnn, model_cfg.max_len, truncate=False) iterator_dev = torch.utils.data.DataLoader(dataset_dev, run_cfg.batch_size_eval, collate_fn=collate_fn) end = Print(" ".join(['loaded', str(len(dataset_dev)), 'sequences']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) models_list = [ ] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight] ### model if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg) elif not flag_lm_model: model = plus_rnn.PLUS_RNN(model_cfg) else: model = p_elmo.P_ELMo(model_cfg) models_list.append([model, "", flag_lm_model, flag_rnn, False]) ### lm_model if flag_lm_model: lm_model = p_elmo.P_ELMo_lm(lm_model_cfg) models_list.append([lm_model, "lm", True, False, False]) ### pr_model if flag_rnn: pr_model = mlp.MLP(pr_model_cfg) models_list.append([pr_model, "pr", False, False, False]) params, pr_params = [], [] for model, idx, frz, _, _ in models_list: if frz: continue elif idx != "pr": params += [p for p in model.parameters() if p.requires_grad] else: pr_params += [p for p in model.parameters() if p.requires_grad] load_models(args, models_list, device, data_parallel, output, tfm_cls=flag_rnn) get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss end = Print('end initializing a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) optim = torch.optim.Adam([{ 'params': params, 'lr': run_cfg.learning_rate }, { 'params': pr_params, 'lr': run_cfg.pr_learning_rate }]) tasks_list = [] # list of lists [idx, metrics_train, metrics_eval] tasks_list.append(["cls", [], ["acc", "acc_p"]]) if flag_lm_loss: tasks_list.append(["lm", [], ["acc"]]) trainer = Trainer(models_list, get_loss, run_cfg, tasks_list, optim) trainer_args = {} trainer_args["data_parallel"] = data_parallel trainer_args["paired"] = False if flag_rnn: trainer_args["projection"] = pr_model_cfg.projection if flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_transmembrane else: trainer_args["evaluate_cls"] = plus_tfm.evaluate_cls_amino trainer_args["evaluate"] = ["cls", plus_tfm.evaluate_transmembrane] end = Print('end setting trainer configurations', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## train a model start = Print('start training a model', output) Print(trainer.get_headline(), output) for epoch in range(run_cfg.num_epochs): ### train dataset_train.set_augment(flag_lm_loss) for B, batch in enumerate(iterator_train): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.train(batch, trainer_args) if B % 10 == 0: print('# epoch [{}/{}] train {:.1%} loss={:.4f}'.format( epoch + 1, run_cfg.num_epochs, B / len(iterator_train), trainer.loss_train), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate cls dataset_dev.set_augment(False) trainer.set_exec_flags(["cls", 'lm'], [True, False]) for b, batch in enumerate(iterator_dev): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format( b / len(iterator_dev), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate lm if flag_lm_loss: dataset_dev.set_augment(True) trainer.set_exec_flags(["cls", 'lm'], [False, True]) for b, batch in enumerate(iterator_dev): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format( b / len(iterator_dev), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### print log and save models trainer.save(save_prefix) Print(trainer.get_log(epoch + 1, args=trainer_args), output) trainer.set_exec_flags(["cls", "lm"], [True, True]) trainer.reset() if trainer.patience == 0: break end = Print('end training a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True)
def main(): set_seeds(2020) args = vars(parser.parse_args()) alphabet = Protein() data_cfg = config.DataConfig(args["data_config"]) model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=2) run_cfg = config.RunConfig(args["run_config"], sanity_check=args["sanity_check"]) output, save_prefix = set_output(args, "train_pfam_log") os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[ "device"] is not None else "" device, data_parallel = torch.device("cuda" if torch.cuda.is_available( ) else "cpu"), torch.cuda.device_count() > 1 config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output) flag_rnn = (model_cfg.model_type == "RNN") flag_paired = ("testpairs" in data_cfg.path) ## load a train dataset start = Print( " ".join(['start loading a train dataset:', data_cfg.path["train"]]), output) dataset_train = pfam.load_pfam(data_cfg, "train", alphabet, args["sanity_check"]) dataset_train = dataset.Pfam_dataset(*dataset_train, alphabet, run_cfg, flag_rnn, model_cfg.max_len, random_pairing=flag_paired, sanity_check=args["sanity_check"]) if flag_rnn and flag_paired: collate_fn = dataset.collate_paired_sequences elif flag_rnn: collate_fn = dataset.collate_sequences_pelmo else: collate_fn = None iterator_train = torch.utils.data.DataLoader(dataset_train, run_cfg.batch_size_train, collate_fn=collate_fn, shuffle=True) end = Print(" ".join(['loaded', str(len(dataset_train)), 'sequences']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## load a test dataset start = Print( " ".join([ 'start loading a test dataset:', data_cfg.path["testpairs" if flag_paired else "test"] ]), output) if flag_paired: dataset_test = pfam.load_pfam_pairs(data_cfg, "testpairs", alphabet, args["sanity_check"]) dataset_test = dataset.PairedPfam_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len) else: dataset_test = pfam.load_pfam(data_cfg, "test", alphabet, args["sanity_check"]) dataset_test = dataset.Pfam_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len, random_pairing=flag_paired, sanity_check=args["sanity_check"]) iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size_eval, collate_fn=collate_fn) end = Print( " ".join(['loaded', str(len(dataset_test)), 'sequence(pair)s']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) models_list = [ ] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight] if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg) run_cfg.set_total_steps(len(dataset_train)) elif model_cfg.rnn_type == "B": model = plus_rnn.PLUS_RNN(model_cfg) else: model = p_elmo.P_ELMo_lm(model_cfg) models_list.append([model, "", False, flag_rnn, flag_rnn and flag_paired]) params = [] for model, _, frz, _, _ in models_list: if not frz: params += [p for p in model.parameters() if p.requires_grad] load_models(args, models_list, device, data_parallel, output) get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss end = Print('end initializing a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) if flag_rnn: optim = torch.optim.Adam(params, lr=run_cfg.learning_rate) else: optim = get_BertAdam_optimizer(run_cfg, models_list[0][0]) tasks_list = [] # list of lists [idx, metrics_train, metrics_eval] if run_cfg.lm_loss_lambda != -1: tasks_list.append(["lm", [], ["acc"]]) if run_cfg.cls_loss_lambda != -1: tasks_list.append(["cls", [], ["acc"]]) trainer = Trainer(models_list, get_loss, run_cfg, tasks_list, optim) trainer_args = {} trainer_args["data_parallel"] = data_parallel trainer_args["paired"] = flag_paired if flag_paired and flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_sfp elif flag_paired: trainer_args["evaluate_cls"] = plus_tfm.evaluate_sfp else: trainer_args["num_alphabets"] = len(alphabet) end = Print('end setting trainer configurations', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## train a model start = Print('start training a model', output) Print(trainer.get_headline(), output) for epoch in range(run_cfg.num_epochs): ### train for B, batch in enumerate(iterator_train): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.train(batch, trainer_args) if B % 10 == 0: print('# epoch [{}/{}] train {:.1%} loss={:.4f}'.format( epoch + 1, run_cfg.num_epochs, B / len(iterator_train), trainer.loss_train), end='\r', file=sys.stderr) if trainer.global_step % 20000 == 0 or args["sanity_check"]: print(' ' * 150, end='\r', file=sys.stderr) ### evaluate lm if run_cfg.lm_loss_lambda != -1: if flag_paired: dataset_test.set_augment(True) trainer.set_exec_flags(["lm", "cls"], [True, False]) for b, batch in enumerate(iterator_test): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate cls if run_cfg.cls_loss_lambda != -1: dataset_test.set_augment(False) trainer.set_exec_flags(["lm", "cls"], [False, True]) for b, batch in enumerate(iterator_test): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### print log and save models trainer.save(save_prefix) Print(trainer.get_log(epoch + 1, args=trainer_args), output) trainer.set_exec_flags(["lm", "cls"], [True, True]) trainer.reset() end = Print('end trainin a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) output.close()
def main(): set_seeds(2020) args = vars(parser.parse_args()) alphabet = Protein() cfgs = [] data_cfg = config.DataConfig(args["data_config"]) cfgs.append(data_cfg) if args["lm_model_config"] is None: model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=5) cfgs += [model_cfg] else: lm_model_cfg = config.ModelConfig(args["lm_model_config"], idx="lm_model_config", input_dim=len(alphabet)) model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), lm_dim=lm_model_cfg.num_layers * lm_model_cfg.hidden_dim * 2, num_classes=5) cfgs += [model_cfg, lm_model_cfg] run_cfg = config.RunConfig(args["run_config"], eval=True, sanity_check=args["sanity_check"]) cfgs.append(run_cfg) output, save_prefix = set_output(args, "eval_homology_log", test=True) os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[ "device"] is not None else "" device, data_parallel = torch.device("cuda" if torch.cuda.is_available( ) else "cpu"), torch.cuda.device_count() > 1 config.print_configs(args, cfgs, device, output) flag_rnn = (model_cfg.model_type == "RNN") flag_lm_model = (args["pretrained_lm_model"] is not None) flag_cm_model = (args["pretrained_cm_model"] is not None) ## load test datasets idxs_test, datasets_test, iterators_test = [ key for key in data_cfg.path.keys() if "pairs" in key ], [], [] start = Print(" ".join(['start loading test datasets'] + idxs_test), output) collate_fn = dataset.collate_paired_sequences if flag_rnn else None for idx_test in idxs_test: dataset_test = homology.load_homology_pairs(data_cfg, idx_test, alphabet, flag_cm_model, args["sanity_check"]) dataset_test = dataset.PairedHomology_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len) iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size_eval, collate_fn=collate_fn) datasets_test.append(dataset_test) iterators_test.append(iterator_test) end = Print( " ".join(['loaded', str(len(dataset_test)), 'sequence pairs']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) models_list = [ ] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight] ### model if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg) elif not flag_lm_model: model = plus_rnn.PLUS_RNN(model_cfg) else: model = p_elmo.P_ELMo(model_cfg) models_list.append([model, "", True, False, False]) ### lm_model if flag_lm_model: lm_model = p_elmo.P_ELMo_lm(lm_model_cfg) models_list.append([lm_model, "lm", True, False, False]) ### cm_model if flag_cm_model: cm_model = cnn.ConvNet2D(model_cfg.embedding_dim) models_list.append([cm_model, "cm", True, False, False]) load_models(args, models_list, device, data_parallel, output) get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss end = Print('end initializing a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) tasks_list = [] # list of lists [idx, metrics_train, metrics_eval] tasks_list.append([ "cls", [], ["acc", "r", "rho", "aupr_cl", "aupr_fo", "aupr_sf", "aupr_fa"] ]) if not flag_lm_model: tasks_list.append(["lm", [], ["acc"]]) if flag_cm_model: tasks_list.append(["cm", [], ["pr", "re", "f1"]]) trainer = Trainer(models_list, get_loss, run_cfg, tasks_list) trainer_args = {} trainer_args["data_parallel"] = data_parallel trainer_args["paired"] = True if flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_homology else: trainer_args["evaluate_cls"] = plus_tfm.evaluate_homology trainer_args["evaluate"] = ["cls", homology.evaluate_homology] end = Print('end setting trainer configurations', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## evaluate a model start = Print('start evaluating a model', output) Print(trainer.get_headline(test=True), output) for idx_test, dataset_test, iterator_test in zip(idxs_test, datasets_test, iterators_test): ### evaluate cls and cm dataset_test.set_augment(False) trainer.set_exec_flags(["cls", 'lm', "cm"], [True, False, True]) for b, batch in enumerate(iterator_test): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate lm if not flag_lm_model: dataset_test.set_augment(True) trainer.set_exec_flags(["cls", 'lm', "cm"], [False, True, False]) for b, batch in enumerate(iterator_test): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) Print(trainer.get_log(test_idx=idx_test, args=trainer_args), output) trainer.reset() end = Print('end evaluating a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) output.close()
def main(): hp = arg_parser.parse_args() validate_args(hp) logger = Logger(hp, model_name='Baseline', write_mode=hp.write_mode) if not hp.test: print(f"Running experiment {logger.model_hash}.") if hp.write_mode != 'NONE': logger.write_hyperparams() print(f"Hyperparameters and checkpoints will be saved in " f"{logger.run_savepath}") torch.manual_seed(hp.seed) torch.cuda.manual_seed_all( hp.seed) # silently ignored if there are no GPUs CUDA = False if torch.cuda.is_available() and not hp.no_cuda: CUDA = True USE_POS = False if hp.pos_emb_dim is not None: USE_POS = True SAVE_IN_SPREADSHEET = False if hp.spreadsheet: SAVE_IN_SPREADSHEET = True corpus = IESTCorpus(config.corpora_dict, hp.corpus, force_reload=hp.force_reload, train_data_proportion=hp.train_data_proportion, dev_data_proportion=hp.dev_data_proportion, batch_size=hp.batch_size, lowercase=hp.lowercase, use_pos=USE_POS) if hp.embeddings != "random": # Load pre-trained embeddings embeddings = Embeddings( config.embedding_dict[hp.embeddings], k_most_frequent=None, force_reload=hp.force_reload, ) # Get subset of embeddings corresponding to our vocabulary embedding_matrix = embeddings.generate_embedding_matrix( corpus.lang.token2id) print( f"{len(embeddings.unknown_tokens)} words from vocabulary not found " f"in {hp.embeddings} embeddings. ") else: word_vocab_size = len(corpus.lang.token2id) embedding_matrix = np.random.uniform(-0.05, 0.05, size=(word_vocab_size, 300)) # Repeat process for character embeddings with the difference that they are # not pretrained # Initialize character embedding matrix randomly char_vocab_size = len(corpus.lang.char2id) char_embedding_matrix = np.random.uniform(-0.05, 0.05, size=(char_vocab_size, hp.char_emb_dim)) pos_embedding_matrix = None if USE_POS: # Initialize pos embedding matrix randomly pos_vocab_size = len(corpus.pos_lang.token2id) pos_embedding_matrix = np.random.uniform(-0.05, 0.05, size=(pos_vocab_size, hp.pos_emb_dim)) if hp.model_hash: # WARNING: This feature should be used only when testing. We # haven't implemented a proper way to resume training yet. experiment_path = os.path.join(config.RESULTS_PATH, hp.model_hash + '*') ext_experiment_path = glob(experiment_path) assert len( ext_experiment_path) == 1, 'Try provinding a longer model hash' ext_experiment_path = ext_experiment_path[0] model_path = os.path.join(ext_experiment_path, 'best_model.pth') model = torch.load(model_path) else: num_classes = len(corpus.label2id) batch_size = corpus.train_batches.batch_size hidden_sizes = hp.lstm_hidden_size model = IESTClassifier( num_classes, batch_size, embedding_matrix=embedding_matrix, char_embedding_matrix=char_embedding_matrix, pos_embedding_matrix=pos_embedding_matrix, word_encoding_method=hp.word_encoding_method, word_char_aggregation_method=hp.word_char_aggregation_method, sent_encoding_method=hp.model, hidden_sizes=hidden_sizes, use_cuda=CUDA, pooling_method=hp.pooling_method, batch_first=True, dropout=hp.dropout, lstm_layer_dropout=hp.lstm_layer_dropout, sent_enc_dropout=hp.sent_enc_dropout, sent_enc_layers=hp.sent_enc_layers) if CUDA: model.cuda() if hp.write_mode != 'NONE': logger.write_architecture(str(model)) logger.write_current_run_details(str(model)) if hp.model == 'transformer': core_optimizer = torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9) transformer_scheduler = TransformerScheduler( 1024, factor=1, warmup_steps=hp.warmup_iters) optimizer = ScheduledOptim(core_optimizer, transformer_scheduler) else: # optimizer = OptimWithDecay(model.parameters(), # method=hp.optim, # initial_lr=hp.learning_rate, # max_grad_norm=hp.grad_clipping, # lr_decay=hp.learning_rate_decay, # start_decay_at=hp.start_decay_at, # decay_every=hp.decay_every) core_optimizer = torch.optim.Adam( [param for param in model.parameters() if param.requires_grad], lr=0, ) max_iter = corpus.train_batches.num_batches * hp.epochs slanted_triangular_scheduler = SlantedTriangularScheduler( max_iter, max_lr=hp.max_lr, cut_fraction=0.1, ratio=32) optimizer = ScheduledOptim(core_optimizer, slanted_triangular_scheduler) loss_function = torch.nn.CrossEntropyLoss() trainer = Trainer(model, optimizer, loss_function, num_epochs=hp.epochs, use_cuda=CUDA, log_interval=hp.log_interval) # FIXME: This test block of code looks ugly here <2018-06-29 11:41:51, Jorge Balazs> if hp.test: if hp.model_hash is None: raise RuntimeError( 'You should have provided a pre-trained model hash with the ' '--model_hash flag') print(f'Testing model {model_path}') eval_dict = trainer.evaluate(corpus.test_batches) probs = np_softmax(eval_dict['output']) probs_filepath = os.path.join(ext_experiment_path, 'test_probabilities.csv') np.savetxt(probs_filepath, probs, delimiter=',', fmt='%.8f') print(f'Saved prediction probs in {probs_filepath}') labels_filepath = os.path.join(ext_experiment_path, 'test_predictions.txt') labels = [label + '\n' for label in eval_dict['labels']] with open(labels_filepath, 'w', encoding='utf-8') as f: f.writelines(labels) print(f'Saved prediction file in {labels_filepath}') representations_filepath = os.path.join( ext_experiment_path, 'sentence_representations.txt') if hp.save_sent_reprs: with open(representations_filepath, 'w', encoding='utf-8') as f: np.savetxt(representations_filepath, eval_dict['sent_reprs'], delimiter=' ', fmt='%.8f') exit() # Main Training Loop writer = None if hp.write_mode != 'NONE': writer = SummaryWriter(logger.run_savepath) try: best_accuracy = None for epoch in tqdm(range(hp.epochs), desc='Epoch'): total_loss = 0 trainer.train_epoch(corpus.train_batches, epoch, writer) corpus.train_batches.shuffle_examples() eval_dict = trainer.evaluate(corpus.dev_batches, epoch, writer) if hp.update_learning_rate and hp.model != 'transformer': # hp.update_learning_rate is not supposed to be used with # scheduled learning rates optim_updated, new_lr = trainer.optimizer.updt_lr_accuracy( epoch, eval_dict['accuracy']) # TODO: lr_threshold shouldn't be hardcoded lr_threshold = 1e-5 if new_lr < lr_threshold: tqdm.write(f'Learning rate smaller than {lr_threshold}, ' f'stopping.') break if optim_updated: tqdm.write(f'Learning rate decayed to {new_lr}') accuracy = eval_dict['accuracy'] if not best_accuracy or accuracy > best_accuracy: best_accuracy = accuracy logger.update_results({ 'best_valid_acc': best_accuracy, 'best_epoch': epoch }) if hp.write_mode != 'NONE': probs = np_softmax(eval_dict['output']) probs_filepath = os.path.join( logger.run_savepath, 'best_dev_probabilities.csv') np.savetxt(probs_filepath, probs, delimiter=',', fmt='%.8f') labels_filepath = os.path.join(logger.run_savepath, 'best_dev_predictions.txt') labels = [label + '\n' for label in eval_dict['labels']] with open(labels_filepath, 'w', encoding='utf-8') as f: f.writelines(labels) if hp.save_model: logger.torch_save_file('best_model_state_dict.pth', model.state_dict(), progress_bar=tqdm) logger.torch_save_file('best_model.pth', model, progress_bar=tqdm) except KeyboardInterrupt: pass finally: if SAVE_IN_SPREADSHEET: logger.insert_in_googlesheets()
def main(): set_seeds(2020) args = vars(parser.parse_args()) alphabet = Protein() cfgs = [] data_cfg = config.DataConfig(args["data_config"]); cfgs.append(data_cfg) if args["lm_model_config"] is None: model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=5) cfgs += [model_cfg] else: lm_model_cfg = config.ModelConfig(args["lm_model_config"], idx="lm_model_config", input_dim=len(alphabet)) model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), lm_dim=lm_model_cfg.num_layers * lm_model_cfg.hidden_dim * 2, num_classes=5) cfgs += [model_cfg, lm_model_cfg] run_cfg = config.RunConfig(args["run_config"], sanity_check=args["sanity_check"]); cfgs.append(run_cfg) output, save_prefix = set_output(args, "train_homology_log") os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args["device"] is not None else "" device, data_parallel = torch.device("cuda" if torch.cuda.is_available() else "cpu"), torch.cuda.device_count() > 1 config.print_configs(args, cfgs, device, output) flag_rnn = (model_cfg.model_type == "RNN") flag_lm_model = (args["lm_model_config"] is not None) flag_lm_loss = (run_cfg.lm_loss_lambda != -1) flag_cm_loss = (run_cfg.cm_loss_lambda != -1) ## load a train dataset start = Print(" ".join(['start loading a train dataset:', data_cfg.path["train"]]), output) dataset_train = homology.load_homology(data_cfg, "train", alphabet, flag_cm_loss, args["sanity_check"]) dataset_train = dataset.Homology_dataset(*dataset_train, alphabet, run_cfg, flag_rnn, model_cfg.max_len) sampler = dataset.HomolgySampler(dataset_train.labels, run_cfg) collate_fn = dataset.collate_paired_sequences if flag_rnn else None iterator_train = torch.utils.data.DataLoader(dataset_train, run_cfg.batch_size_train, collate_fn=collate_fn, sampler=sampler) end = Print(" ".join(['loaded', str(int(np.sqrt(len(dataset_train)))), 'sequences']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## load a dev dataset start = Print(" ".join(['start loading a dev dataset:', data_cfg.path["devpairs"]]), output) dataset_test = homology.load_homology_pairs(data_cfg, "devpairs", alphabet, flag_cm_loss, args["sanity_check"]) dataset_test = dataset.PairedHomology_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len) iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size_eval, collate_fn=collate_fn) end = Print(" ".join(['loaded', str(len(dataset_test)), 'sequence pairs']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) models_list = [] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight] ### model if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg) elif not flag_lm_model: model = plus_rnn.PLUS_RNN(model_cfg) else: model = p_elmo.P_ELMo(model_cfg) models_list.append([model, "", False, flag_rnn, flag_rnn]) ### lm_model if flag_lm_model: lm_model = p_elmo.P_ELMo_lm(lm_model_cfg) models_list.append([lm_model, "lm", True, False, False]) ### cm_model if flag_cm_loss: cm_model = cnn.ConvNet2D(model_cfg.embedding_dim) models_list.append([cm_model, "cm", False, False, True]) params = [] for model, _, frz, _, _ in models_list: if not frz: params += [p for p in model.parameters() if p.requires_grad] load_models(args, models_list, device, data_parallel, output, tfm_cls=flag_rnn) get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss end = Print('end initializing a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) optim = torch.optim.Adam(params, lr=run_cfg.learning_rate) tasks_list = [] # list of lists [idx, metrics_train, metrics_eval] tasks_list.append(["cls", [], ["acc", "r", "rho"]]) if flag_lm_loss: tasks_list.append(["lm", [], ["acc"]]) if flag_cm_loss: tasks_list.append(["cm", [], ["pr", "re", "f1"]]) trainer = Trainer(models_list, get_loss, run_cfg, tasks_list, optim) trainer_args = {} trainer_args["data_parallel"] = data_parallel trainer_args["paired"] = True if flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_homology else: trainer_args["evaluate_cls"] = plus_tfm.evaluate_homology trainer_args["evaluate"] = ["cls", homology.evaluate_homology] end = Print('end setting trainer configurations', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## train a model start = Print('start training a model', output) Print(trainer.get_headline(), output) for epoch in range(run_cfg.num_epochs): ### train for B, batch in enumerate(iterator_train): batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch] trainer.train(batch, trainer_args) if B % 10 == 0: print('# epoch [{}/{}] train {:.1%} loss={:.4f}'.format( epoch + 1, run_cfg.num_epochs, B / len(iterator_train), trainer.loss_train), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate cls and cm dataset_test.set_augment(False) trainer.set_exec_flags(["cls", 'lm', "cm"], [True, False, flag_cm_loss]) for b, batch in enumerate(iterator_test): batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate lm if flag_lm_loss: dataset_test.set_augment(True) trainer.set_exec_flags(["cls", 'lm', "cm"], [False, True, False]) for b, batch in enumerate(iterator_test): batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### print log and save models trainer.save(save_prefix) Print(trainer.get_log(epoch + 1, args=trainer_args), output) trainer.set_exec_flags(["cls", "lm", "cm"], [True, True, True]) trainer.reset() if trainer.patience == 0: break end = Print('end training a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) output.close()
def main(): set_seeds(2020) args = vars(parser.parse_args()) alphabet = Protein() data_cfg = config.DataConfig(args["data_config"]) model_cfg = config.ModelConfig(args["model_config"], input_dim=len(alphabet), num_classes=2) run_cfg = config.RunConfig(args["run_config"], eval=True, sanity_check=args["sanity_check"]) output, save_prefix = set_output(args, "eval_pfam_log", test=True) os.environ['CUDA_VISIBLE_DEVICES'] = args["device"] if args[ "device"] is not None else "" device, data_parallel = torch.device("cuda" if torch.cuda.is_available( ) else "cpu"), torch.cuda.device_count() > 1 config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output) flag_rnn = (model_cfg.model_type == "RNN") flag_paired = ("testpairs" in data_cfg.path) ## load a test dataset start = Print( " ".join([ 'start loading a test dataset:', data_cfg.path["testpairs" if flag_paired else "test"] ]), output) if flag_paired: dataset_test = pfam.load_pfam_pairs(data_cfg, "testpairs", alphabet, args["sanity_check"]) dataset_test = dataset.PairedPfam_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len) else: dataset_test = pfam.load_pfam(data_cfg, "test", alphabet, args["sanity_check"]) dataset_test = dataset.Pfam_dataset(*dataset_test, alphabet, run_cfg, flag_rnn, model_cfg.max_len, random_pairing=flag_paired, sanity_check=args["sanity_check"]) if flag_rnn and flag_paired: collate_fn = dataset.collate_paired_sequences elif flag_rnn: collate_fn = dataset.collate_sequences_pelmo else: collate_fn = None iterator_test = torch.utils.data.DataLoader(dataset_test, run_cfg.batch_size_eval, collate_fn=collate_fn) end = Print( " ".join(['loaded', str(len(dataset_test)), 'sequence(pair)s']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) models_list = [ ] # list of lists [model, idx, flag_frz, flag_clip_grad, flag_clip_weight] if not flag_rnn: model = plus_tfm.PLUS_TFM(model_cfg) elif model_cfg.rnn_type == "B": model = plus_rnn.PLUS_RNN(model_cfg) else: model = p_elmo.P_ELMo_lm(model_cfg) models_list.append([model, "", True, False, False]) load_models(args, models_list, device, data_parallel, output) get_loss = plus_rnn.get_loss if flag_rnn else plus_tfm.get_loss end = Print('end initializing a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) tasks_list = [] # list of lists [idx, metrics_train, metrics_eval] tasks_list.append(["lm", [], ["acc"]]) if flag_paired: tasks_list.append(["cls", [], ["acc"]]) trainer = Trainer(models_list, get_loss, run_cfg, tasks_list) trainer_args = {} trainer_args["data_parallel"] = data_parallel trainer_args["paired"] = flag_paired if flag_paired and flag_rnn: trainer_args["evaluate_cls"] = plus_rnn.evaluate_sfp elif flag_paired: trainer_args["evaluate_cls"] = plus_tfm.evaluate_sfp else: trainer_args["num_alphabets"] = len(alphabet) end = Print('end setting trainer configurations', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) ## evaluate a model start = Print('start evaluating a model', output) Print(trainer.get_headline(test=True), output) ### evaluate lm if flag_paired: dataset_test.set_augment(True) trainer.set_exec_flags(["lm", "cls"], [True, False]) for b, batch in enumerate(iterator_test): batch = [t.to(device) if type(t) is torch.Tensor else t for t in batch] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# lm {:.1%} loss={:.4f}'.format(b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### evaluate cls if flag_paired: dataset_test.set_augment(False) trainer.set_exec_flags(["lm", "cls"], [False, True]) for b, batch in enumerate(iterator_test): batch = [ t.to(device) if type(t) is torch.Tensor else t for t in batch ] trainer.evaluate(batch, trainer_args) if b % 10 == 0: print('# cls {:.1%} loss={:.4f}'.format( b / len(iterator_test), trainer.loss_eval), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) Print(trainer.get_log(test_idx="Pfam", args=trainer_args), output) end = Print('end evaluating a model', output) Print("".join(['elapsed time:', str(end - start)]), output, newline=True) output.close()
def main(): args = vars(parser.parse_args()) check_args(args) set_seeds(2020) data_cfg = config.DataConfig(args["data_config"]) model_cfg = config.ModelConfig(args["model_config"]) run_cfg = config.RunConfig(args["run_config"], eval=False) output, save_prefix = set_output(args, "train_model_log") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config.print_configs(args, [data_cfg, model_cfg, run_cfg], device, output) torch.zeros((1)).to(device) ## Loading datasets start = Print(" ".join(['start loading datasets']), output) dataset_train = get_dataset_from_configs(data_cfg, split_idx="train") dataset_val = get_dataset_from_configs(data_cfg, split_idx="val") iterator_train = torch.utils.data.DataLoader(dataset_train, run_cfg.batch_size, shuffle=True, pin_memory=True, num_workers=4) iterator_val = torch.utils.data.DataLoader(dataset_val, run_cfg.batch_size, shuffle=False, pin_memory=True, num_workers=4) end = Print( " ".join(['loaded', str(len(dataset_train)), 'dataset_train samples']), output) end = Print( " ".join(['loaded', str(len(dataset_val)), 'dataset_val samples']), output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## initialize a model start = Print('start initializing a model', output) model, params = get_model(model_cfg, data_cfg.with_esa, run_cfg.dropout_rate) end = Print('end initializing a model', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## setup trainer configurations start = Print('start setting trainer configurations', output) trainer = Trainer(model) trainer.set_device(device) trainer.set_optim_scheduler(run_cfg, params) end = Print('end setting trainer configurations', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) ## train a model start = Print('start training a model', output) Print(trainer.get_headline(), output) for epoch in range(int(trainer.epoch), run_cfg.num_epochs): ### train for B, batch in enumerate(iterator_train): trainer.train(batch, device) if B % 5 == 0: print('# epoch [{}/{}] train {:.1%}'.format( epoch + 1, run_cfg.num_epochs, B / len(iterator_train)), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### validation for B, batch in enumerate(iterator_val): trainer.evaluate(batch, device) if B % 5 == 0: print('# epoch [{}/{}] val {:.1%}'.format( epoch + 1, run_cfg.num_epochs, B / len(iterator_val)), end='\r', file=sys.stderr) print(' ' * 150, end='\r', file=sys.stderr) ### print log and save models trainer.epoch += 1 trainer.scheduler_step() trainer.save_model(save_prefix) trainer.log("val", output) end = Print('end training a model', output) Print(" ".join(['elapsed time:', str(end - start)]), output, newline=True) if not output == sys.stdout: output.close()
def main(): hp = arg_parser.parse_args() logger = Logger(hp, model_name='elmo4irony', write_mode=hp.write_mode) if hp.write_mode != 'NONE': logger.write_hyperparams() torch.manual_seed(hp.seed) torch.cuda.manual_seed_all(hp.seed) # silently ignored if there are no GPUs CUDA = False if torch.cuda.is_available() and not hp.no_cuda: CUDA = True USE_POS = False corpus = ClassificationCorpus(config.corpora_dict, hp.corpus, force_reload=hp.force_reload, train_data_proportion=hp.train_data_proportion, dev_data_proportion=hp.dev_data_proportion, batch_size=hp.batch_size, lowercase=hp.lowercase, use_pos=USE_POS) if hp.model_hash: experiment_path = os.path.join(config.RESULTS_PATH, hp.model_hash + '*') ext_experiment_path = glob(experiment_path) assert len(ext_experiment_path) == 1, 'Try providing a longer model hash' ext_experiment_path = ext_experiment_path[0] model_path = os.path.join(ext_experiment_path, 'best_model.pth') model = torch.load(model_path) else: # Define some specific parameters for the model num_classes = len(corpus.label2id) batch_size = corpus.train_batches.batch_size hidden_sizes = hp.lstm_hidden_size model = Classifier(num_classes, batch_size, hidden_sizes=hidden_sizes, use_cuda=CUDA, pooling_method=hp.pooling_method, batch_first=True, dropout=hp.dropout, sent_enc_dropout=hp.sent_enc_dropout, sent_enc_layers=hp.sent_enc_layers) if CUDA: model.cuda() if hp.write_mode != 'NONE': logger.write_architecture(str(model)) logger.write_current_run_details(str(model)) optimizer = OptimWithDecay(model.parameters(), method=hp.optim, initial_lr=hp.learning_rate, max_grad_norm=hp.grad_clipping, lr_decay=hp.learning_rate_decay, start_decay_at=hp.start_decay_at, decay_every=hp.decay_every) loss_function = torch.nn.CrossEntropyLoss() trainer = Trainer(model, optimizer, loss_function, num_epochs=hp.epochs, use_cuda=CUDA, log_interval=hp.log_interval) if hp.test: if hp.model_hash is None: raise RuntimeError( 'You should have provided a pre-trained model hash with the ' '--model_hash flag' ) print(f'Testing model {model_path}') eval_dict = trainer.evaluate(corpus.test_batches) probs = np_softmax(eval_dict['output']) probs_filepath = os.path.join(ext_experiment_path, 'test_probs.csv') np.savetxt(probs_filepath, probs, delimiter=',', fmt='%.8f') print(f'Saved prediction probs in {probs_filepath}') labels_filepath = os.path.join(ext_experiment_path, 'predictions.txt') labels = [label + '\n' for label in eval_dict['labels']] with open(labels_filepath, 'w', encoding='utf-8') as f: f.writelines(labels) print(f'Saved prediction file in {labels_filepath}') # We know the last segment of ext_experiment_path corresponds to the # model hash full_model_hash = os.path.basename(ext_experiment_path) # WARNING: We are accessing an internal method of the Logger class; # This could corrupt the results database if not used properly logger._update_in_db({'test_acc': eval_dict['accuracy'], 'test_f1': eval_dict['f1'], 'test_p': eval_dict['precision'], 'test_r': eval_dict['recall']}, experiment_hash=full_model_hash) exit() writer = None if hp.write_mode != 'NONE': writer = SummaryWriter(logger.run_savepath) try: best_accuracy = None for epoch in tqdm(range(hp.epochs), desc='Epoch'): total_loss = 0 trainer.train_epoch(corpus.train_batches, epoch, writer) corpus.train_batches.shuffle_examples() eval_dict = trainer.evaluate(corpus.dev_batches, epoch, writer) if hp.training_schedule == 'decay': optim_updated, new_lr = trainer.optimizer.updt_lr_accuracy(epoch, eval_dict['accuracy']) lr_threshold = 1e-5 if new_lr < lr_threshold: tqdm.write(f'Learning rate smaller than {lr_threshold}, ' f'stopping.') break if optim_updated: tqdm.write(f'Learning rate decayed to {new_lr}') if hp.training_schedule == 'decay-nie': optim_updated, new_lr = trainer.optimizer.update_learning_rate_nie(epoch) if optim_updated: tqdm.write(f'Learning rate decayed to {new_lr}') accuracy = eval_dict['accuracy'] if not best_accuracy or accuracy > best_accuracy: best_accuracy = accuracy logger.update_results({'best_valid_acc': best_accuracy, 'best_epoch': epoch}) if hp.write_mode != 'NONE': probs = np_softmax(eval_dict['output']) probs_filepath = os.path.join(logger.run_savepath, 'best_eval_probs.csv') np.savetxt(probs_filepath, probs, delimiter=',', fmt='%.8f') labels_filepath = os.path.join(logger.run_savepath, 'predictions_dev.txt') labels = [label + '\n' for label in eval_dict['labels']] with open(labels_filepath, 'w', encoding='utf-8') as f: f.writelines(labels) if hp.save_model: logger.torch_save_file('best_model_state_dict.pth', model.state_dict(), progress_bar=tqdm) logger.torch_save_file('best_model.pth', model, progress_bar=tqdm) except KeyboardInterrupt: pass