def test_ultrametrize_with_empty_levels(self):
     # Ultrametrize and set to 2 levels already ultrametric from tree below
     # 0  1     2  3
     #  \/ d=1   \/ d=3
     #  01       23
     #     \    / d=8
     #      0123
     src_matr = [
         [0, 1, 8, 8],
         [1, 0, 8, 8],
         [8, 8, 0, 3],
         [8, 8, 3, 0],
     ]
     expected_matr = src_matr
     res = get_ultra_metric(src_matr, UltraMetricParams(max_level=8))
     self.assertEqual(expected_matr, res)
 def test_ultrametrize_non_ultrametric(self):
     # get matrix from sample 1 (test_ultrametrize_already_ultrametric)
     # but some distances aren't ultrametric
     src_matr = [
         [0, 1, 7, 8],  # here the difference: 7
         [1, 0, 8, 8],
         [7, 8, 0, 3],  # here the difference: 7
         [8, 8, 3, 0],
     ]
     expected_matr = [
         [0, 1, 2, 2],
         [1, 0, 2, 2],
         [2, 2, 0, 1],
         [2, 2, 1, 0],
     ]
     res = get_ultra_metric(src_matr, UltraMetricParams(max_level=2))
     self.assertEqual(expected_matr, res)
 def test_ultrametrize_to_top_level(self):
     # Ultrametrize and set to 2 levels already ultrametric from tree below
     # 0  1     2  3
     #  \/ d=1   \/ d=4.6 (here the difference, d=4.6, it will be 2nd level)
     #  01       23
     #     \    / d=8
     #      0123
     src_matr = [
         [0, 1, 8, 8],
         [1, 0, 8, 8],
         [8, 8, 0, 4.6],  # here the difference - 4.6
         [8, 8, 4.6, 0],  # here the difference - 4.6
     ]
     expected_matr = [
         [0, 1, 2, 2],
         [1, 0, 2, 2],
         [2, 2, 0, 2],
         [2, 2, 2, 0],
     ]
     res = get_ultra_metric(src_matr, UltraMetricParams(max_level=2))
     self.assertEqual(expected_matr, res)
Esempio n. 4
0
                    chain_length_weight=0.0,
                    level_weight_multiplier=level_weight_multiplier,
                    use_flipping=use_flipping)

                experiment_matrix = matrDiff.make_experiment_matrix(
                    global_params)

                # corr = matrDiff.corrcoef(experiment_matrix=experiment_matrix)
                # name = f"param_a={param_a}_corr_{corr:0.2f}_{systematic_tree}_{cluster_algorithm}_subtree_(thr,mult)=({global_params.subtree_threshold},{global_params.subtree_multiplier})_lev_mult={global_params.level_weight_multiplier}"
                #print_matrix(experiment_matrix, name, matrDiff.names, corr, with_headers=True)
                #experiment_array = make_experiment_array(experiment_matrix)

                effective_cluster_algorithm = cluster_algorithm
                if cluster_algorithm == 'ultrametric':
                    ultra_matrix = get_ultra_metric(
                        to_full_matrix(experiment_matrix),
                        UltraMetricParams(max_level=len(experiment_matrix)))
                    experiment_matrix = ultra_matrix
                    effective_cluster_algorithm = 'average'

                plot_matrix = to_full_matrix(experiment_matrix)
                # convert the redundant n*n square matrix form into a condensed nC2 array
                # dist_array[{n choose 2}-{n-i choose 2} + (j-i-1)] is the distance between points i and j
                dist_array = ssd.squareform(plot_matrix)

                #clustered_trees = hierarchy.linkage(np.asarray(experiment_array), cluster_algorithm)
                clustered_trees = hierarchy.linkage(
                    dist_array, effective_cluster_algorithm)

                corr = corr_clustered_trees(clustered_trees, matrDiff.names,
                                            matrDiff.make_systematic_matrix())
Esempio n. 5
0
                      "../../input/systematic_tree_morph.xtg", ["Angiosperms"],
                      max_level=10)

init_values = [0.5, 0.1, 0.0]
x = init_values
global_params = GlobalParams(max_level=10,
                             param_a=x[0],
                             g_weight=x[1],
                             chain_length_weight=x[2])

experiment_matrix = matrDiff.make_full_experiment_matrix(global_params)
print(experiment_matrix)

for level_count in range(30):
    name = f"ultrametric_{x[0]}_{x[1]}_{x[2]}_{level_count + 1}"
    ultra_matrix = get_ultra_metric(
        experiment_matrix, UltraMetricParams(max_level=level_count + 1))

    ultra_array = make_experiment_array(ultra_matrix)
    clustered_trees = hierarchy.linkage(np.asarray(ultra_array), 'average')
    corrcoef = matrDiff.corrcoef(ultra_matrix)
    corrcoef2 = common_corrcoef(experiment_matrix, ultra_matrix)

    print_matrix(ultra_matrix,
                 name,
                 matrDiff.names,
                 corrcoef,
                 with_headers=True)
    draw_plot(clustered_trees, matrDiff.names, name,
              f"../../output/ultra_metric/{name}.png")