def main():
    #Data.highlighted_image.browse(Data.dirs.images.images, Data.dirs.images.cell)
    #return

    images = Data.ImageIterableDataset(
        (Data.dirs.images.images, Data.dirs.images.cell),
        Data.data_aug.flip_scale_pipeline,
        Data.CropGenerator(
            (256, 256),
            validate_crop=lambda t: .1 < t[1].mean(),  # cell prominence
        ),
        n_streams=8,
    )
    images = torch.utils.data.DataLoader(images, batch_size=64, drop_last=True)

    ae = Models.Autoencoders.VAE(2048, 2)

    Models.LayerInfo.on()
    print(ae)
    out = ae(next(iter(images)))
    Models.LayerInfo.off()

    Training.VAE.train(ae, images, epochs=256)
import os
from timeit import default_timer as timer
from src import Plotting as p
import pickle

n = 1000  # n: Numero de agentes
s = 8  # s: Numero de estrategias por agente
g_a = 60  # g_a: periodo de DGA
g_m = 0.5  # g_m: ratio de mutacion
g_p = 8  # g_p: tamao de la 'communication pool'
p_max = 10  # p_max: pos max de cada agente
ncycles = 100  # ncycles: Numero de ciclos en los que el algoritmo recorre el periodo de optimizacion
max_t = 20  # Valor max que pueden alcanzar los valores Tm, Td, Ty dentro de las estragias

stock = 'SP 500'
df = Data.get_pandas_dataframe(r'datasets/SP500.csv',
                               'Open').drop(columns=['index'])
title = 'SP 500'

prices = list(df.Price.values)
dates = list(df.Date.values)
Mt = list(df.Mt.values)
Dt = list(df.Dt.values)
Yt = list(df.Yt.values)

initial_date = '1990-01-02'
cut_date = '2005-05-12'
end_date = '2012-02-10'

initial_idx = dates.index(initial_date)
cut_idx = dates.index(cut_date)
end_idx = dates.index(end_date)
Esempio n. 3
0
    elif message.content.startswith(Constants.status):
        await statusPrompt.print_current_statuses(message)

    elif message.content.startswith(Constants.my_status):
        await statusPrompt.print_my_status(message)

    elif message.content.startswith(Constants.heroAction):
        await actionPrompt.do_action(message)

    elif message.content.startswith(Constants.partyAction):
        await roomChange.parse_action(message)

data = Data.Data({
    Constants.items: [],
    Constants.characters: [],
    Constants.rooms: copy.copy(Constants.room_names),
    Constants.doors: copy.copy(Constants.door_names),
})
data.current_room.objects.append(
    Character(
        {Constants.health: 500,
         Constants.value: 50,
         Constants.attack: 0,
         Constants.speed: 0,
         Constants.mana: 0,
         Constants.crit: 0,
         Constants.name: "Target_Dummy",
         Constants.description: "An unassuming target dummy",
         Constants.inventory: [Item({
                Constants.name: "Head",
                Constants.description: "The head of your conquered foe, the target dummy",
Esempio n. 4
0
from __future__ import print_function

import keras.backend as K
import numpy as np
from keras.utils import plot_model
import src.Data as Data
import src.net as net
'''
the file can draw the structure of the neural network
'''
(x_train, y_train),(x_test, y_test),input_shape, batch_size, num_classes, epoches =  Data.getMiniData()
np.random.seed(14343)
cnn = net.cnnOneLayer(input_shape, 2, (4, 4), batch_size=128)
plot_model(cnn, show_shapes=True, show_layer_names=True,to_file='./logs/cnn.pdf')
np.random.seed(14343)
fcnn =  net.fcOneLayer((13 * 13, 16), batch_size=128)
plot_model(fcnn, show_shapes=True, show_layer_names=True,to_file='./logs/fc.pdf')

K.clear_session()
Esempio n. 5
0
                    type=str,
                    default='model_files/MIE',
                    help='Location to save.')
args = parser.parse_args()

# import pdb; pdb.set_trace()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

dictionary = Dictionary()
dictionary.load('./data/dictionary.txt')

ontology = Ontology(dictionary)
ontology.add_raw('./data/ontology.json', '状态')
ontology.add_examples('./data/example_dict.json')

data = Data(100, dictionary, ontology)
data.add_raw('train', './data/train.json', 'window')
data.add_raw('test', './data/test.json', 'window')
data.add_raw('dev', './data/dev.json', 'window')

# params of the model.
params = {
    "add_global": args.add_global,
    "num_units": args.hidden_size,
    "num_layers": args.mlp_layer_num,
    "keep_p": args.keep_p
}

# Initialize the model.
model = MIE(data, ontology, params=params)
Esempio n. 6
0
def main():

    print("================================")
    print("        AIStocksAgents-v1       ")
    print("================================")
    print("Select source .csv file (/full/path/to/file):")
    file = input().strip()
    print(
        "Select initial date of optimization period (same format as in .csv files):"
    )
    initial_date = input().strip()
    print(
        "Select cut date of optimization period (same format as in .csv files):"
    )
    cut_date = input().strip()
    print("Select end date of test period (same format as in .csv files):")
    end_date = input().strip()
    print("Select number of optimzation cycles:")
    ncycles = int(input().strip())
    print("Select foder where results will be stored (/full/path/to/folder):")
    results = input().strip()

    n = 1000  # n: Number of agents
    s = 8  # s: Number of strategies per agent
    g_a = 60  # g_a: DGA rounds length
    g_m = 0.5  # g_m: Mutation rate
    g_p = 8  # g_p: Size of the communication pool
    p_max = 10  # p_max: Max position held by agent
    max_t = 20

    df = dat.get_pandas_dataframe(file, 'Open').drop(columns=['index'])

    prices = list(df.Price.values)
    dates = list(df.Date.values)
    Mt = list(df.Mt.values)
    Dt = list(df.Dt.values)
    Yt = list(df.Yt.values)

    initial_idx = dates.index(initial_date)
    cut_idx = dates.index(cut_date)
    end_idx = dates.index(end_date)

    print('Initial date (index in series) is ' + initial_date + '(' +
          str(initial_idx) + ')')
    print('Cut date (index in series) is ' + cut_date + '(' + str(cut_idx) +
          ')')
    print('End date (index in series) is ' + end_date + '(' + str(end_idx) +
          ')')

    print('Lenght in timesteps of the optimization period: ' +
          str(cut_idx - initial_idx))
    print('Lenght in timesteps of the test period: ' + str(end_idx - cut_idx))

    alg = Alg.Algorithm(prices, Mt, Dt, Yt, n, s, g_a, g_m, g_p, p_max,
                        ncycles, initial_idx, cut_idx, end_idx, max_t)
    start = timer()

    print('Starting the simulation...')
    pool, all_agents, statistics_opt, avg_wealth_t_test, avg_position_t_test, max_opt, min_opt = alg.run(
    )

    end = timer() - start

    print('Duration of the execution ', f.normalize_seconds(end))

    tmp = str(datetime.datetime.now())

    directory = results + '/' + tmp

    os.mkdir(directory)

    last_price_opt = prices[cut_idx]
    last_price_test = prices[end_idx]

    p.save_histogram(all_agents,
                     'Number of agents by wealth - Histogram - Optimization',
                     25, directory + '/histogram-optimization-period.png')

    p.save_histogram([a.get_wealth(last_price_test) for a in pool],
                     'Number of agents by wealth - Histogram - Test', 25,
                     directory + '/histogram-test-period.png')

    # Position + Price chart

    plt.rcParams["figure.figsize"] = (12, 8)

    fig, ax1 = plt.subplots()
    color = 'black'
    ax1.set_xlabel('Day')
    ax1.set_ylabel('Stcok')
    ax1.plot(prices[cut_idx:end_idx], color=color)

    ax2 = ax1.twinx()

    color = 'orange'
    ax2.set_ylabel('Average Position', color=color)
    ax2.plot(avg_position_t_test, color=color, linewidth=0.8, alpha=0.7)
    ax2.tick_params(axis='y', labelcolor=color)
    fig.tight_layout()
    plt.savefig(directory + '/position-price-test-chart.png')

    # Wealth + Price chart
    fig, ax1 = plt.subplots()
    color = 'black'
    ax1.set_xlabel('Day')
    ax1.set_ylabel('Stock')
    ax1.plot(prices[cut_idx:end_idx], color=color)

    ax2 = ax1.twinx()

    color = 'red'
    ax2.set_ylabel('Mean Wealth', color=color)
    ax2.plot(avg_wealth_t_test, color=color)
    ax2.tick_params(axis='y', labelcolor=color)
    fig.tight_layout()
    plt.savefig(directory + '/wealth-price-test-chart.png')

    test_result = [agent.get_wealth(last_price_test) for agent in pool]

    file = open(directory + '/report.txt', 'w')

    p.out_report(file, alg, statistics_opt, max_opt, min_opt, test_result,
                 'Stock')
Esempio n. 7
0
parser.add_argument('-lr',
                    '--lrate',
                    type=float,
                    help='learning rate',
                    required=True)

args = parser.parse_args()

layers = [int(item) for item in args.layers.split(',')]

sim_id = args.id

lr = args.lrate

myModel = CNN2DModel(num_gpus=1, sim_id=sim_id)

myModel.build_model(blocks=layers)

myModel.compile_model(lr=lr, verbose=True)

myModel.build_callbacks('./logs' + str(sim_id))

#witout generators
data = Data()
X_data, Y_data = data.load_XY(pathX='./train/X_data.npz',
                              pathY='./train/Y_data.npz')

#load checkpoint
myModel.load_checkpoint()

myModel.fit_model(X_data, Y_data, epochs=80)
import os
from timeit import default_timer as timer
from src import Plotting as p
import pickle

n = 1000  # n: Numero de agentes
s = 8  # s: Numero de estrategias por agente
g_a = 60  # g_a: periodo de DGA
g_m = 0.5  # g_m: ratio de mutacion
g_p = 8  # g_p: tamao de la 'communication pool'
p_max = 10  # p_max: pos max de cada agente
ncycles = 100  # ncycles: Numero de ciclos en los que el algoritmo recorre el periodo de optimizacion
max_t = 20  # Max value

stock = 'NKY 225'
df = Data.get_pandas_dataframe(r'datasets/NKY225.csv',
                               'Close').drop(columns=['index'])
title = 'NKY 225'

prices = list(df.Price.values)
dates = list(df.Date.values)
Mt = list(df.Mt.values)
Dt = list(df.Dt.values)
Yt = list(df.Yt.values)

initial_date = '1993-03-17'
cut_date = '2005-05-12'
end_date = '2012-05-17'

initial_idx = dates.index(initial_date)
cut_idx = dates.index(cut_date)
end_idx = dates.index(end_date)