Esempio n. 1
0
def batch_to_ids(batch: List[List[str]]) -> torch.Tensor:
    """
    Converts a batch of tokenized sentences to a tensor representing the sentences with encoded characters
    (len(batch), max sentence length, max word length).

    Parameters
    ----------
    batch : ``List[List[str]]``, required
        A list of tokenized sentences.

    Returns
    -------
        A tensor of padded character ids.
    """
    instances = []
    indexer = ELMoTokenCharactersIndexer()
    for sentence in batch:
        tokens = [Token(token) for token in sentence]
        field = TextField(tokens, {'character_ids': indexer})
        instance = Instance({"elmo": field})
        instances.append(instance)

    dataset = Batch(instances)
    vocab = Vocabulary()
    dataset.index_instances(vocab)
    return dataset.as_tensor_dict()['elmo']['character_ids']
Esempio n. 2
0
    def test_forward_pass_runs_correctly(self):
        """
        Check to make sure a forward pass on an ensemble of two identical copies of a model yields the same
        results as the model itself.
        """
        bidaf_ensemble = BidafEnsemble([self.model, self.model])

        batch = Batch(self.instances)
        batch.index_instances(self.vocab)
        training_tensors = batch.as_tensor_dict()

        bidaf_output_dict = self.model(**training_tensors)
        ensemble_output_dict = bidaf_ensemble(**training_tensors)

        metrics = self.model.get_metrics(reset=True)

        # We've set up the data such that there's a fake answer that consists of the whole
        # paragraph.  _Any_ valid prediction for that question should produce an F1 of greater than
        # zero, while if we somehow haven't been able to load the evaluation data, or there was an
        # error with using the evaluation script, this will fail.  This makes sure that we've
        # loaded the evaluation data correctly and have hooked things up to the official evaluation
        # script.
        assert metrics['f1'] > 0
        assert torch.equal(ensemble_output_dict['best_span'],
                           bidaf_output_dict['best_span'])
        assert ensemble_output_dict['best_span_str'] == bidaf_output_dict[
            'best_span_str']
Esempio n. 3
0
    def forward_on_instances(
            self, instances: List[Instance]) -> List[Dict[str, numpy.ndarray]]:
        """
        Takes a list of  :class:`~allennlp.data.instance.Instance`s, converts that text into
        arrays using this model's :class:`Vocabulary`, passes those arrays through
        :func:`self.forward()` and :func:`self.decode()` (which by default does nothing)
        and returns the result.  Before returning the result, we convert any
        ``torch.Tensors`` into numpy arrays and separate the
        batched output into a list of individual dicts per instance. Note that typically
        this will be faster on a GPU (and conditionally, on a CPU) than repeated calls to
        :func:`forward_on_instance`.

        Parameters
        ----------
        instances : List[Instance], required
            The instances to run the model on.
        cuda_device : int, required
            The GPU device to use.  -1 means use the CPU.

        Returns
        -------
        A list of the models output for each instance.
        """
        batch_size = len(instances)
        with torch.no_grad():
            cuda_device = self._get_prediction_device()
            dataset = Batch(instances)
            dataset.index_instances(self.vocab)
            model_input = dataset.as_tensor_dict(cuda_device=cuda_device)
            outputs = self.decode(self(**model_input))

            instance_separated_output: List[Dict[str, numpy.ndarray]] = [
                {} for _ in dataset.instances
            ]
            for name, output in list(outputs.items()):
                if isinstance(output, torch.Tensor):
                    # NOTE(markn): This is a hack because 0-dim pytorch tensors are not iterable.
                    # This occurs with batch size 1, because we still want to include the loss in that case.
                    if output.dim() == 0:
                        output = output.unsqueeze(0)

                    if output.size(0) != batch_size:
                        self._maybe_warn_for_unseparable_batches(name)
                        continue
                    output = output.detach().cpu().numpy()
                elif len(output) != batch_size:
                    self._maybe_warn_for_unseparable_batches(name)
                    continue
                outputs[name] = output
                for instance_output, batch_element in zip(
                        instance_separated_output, output):
                    instance_output[name] = batch_element
            return instance_separated_output
Esempio n. 4
0
 def ensure_batch_predictions_are_consistent(self):
     self.model.eval()
     single_predictions = []
     for i, instance in enumerate(self.instances):
         dataset = Batch([instance])
         tensors = dataset.as_tensor_dict(dataset.get_padding_lengths())
         result = self.model(**tensors)
         single_predictions.append(result)
     full_dataset = Batch(self.instances)
     batch_tensors = full_dataset.as_tensor_dict(
         full_dataset.get_padding_lengths())
     batch_predictions = self.model(**batch_tensors)
     for i, instance_predictions in enumerate(single_predictions):
         for key, single_predicted in instance_predictions.items():
             tolerance = 1e-6
             if 'loss' in key:
                 # Loss is particularly unstable; we'll just be satisfied if everything else is
                 # close.
                 continue
             single_predicted = single_predicted[0]
             batch_predicted = batch_predictions[key][i]
             if isinstance(single_predicted, torch.Tensor):
                 if single_predicted.size() != batch_predicted.size():
                     slices = tuple(
                         slice(0, size) for size in single_predicted.size())
                     batch_predicted = batch_predicted[slices]
                 assert_allclose(single_predicted.data.numpy(),
                                 batch_predicted.data.numpy(),
                                 atol=tolerance,
                                 err_msg=key)
             else:
                 assert single_predicted == batch_predicted, key
Esempio n. 5
0
 def test_tagger_with_elmo_token_embedder_forward_pass_runs_correctly(self):
     dataset = Batch(self.instances)
     dataset.index_instances(self.vocab)
     training_tensors = dataset.as_tensor_dict()
     output_dict = self.model(**training_tensors)
     tags = output_dict['tags']
     assert len(tags) == 2
     assert len(tags[0]) == 7
     assert len(tags[1]) == 7
     for example_tags in tags:
         for tag_id in example_tags:
             tag = self.model.vocab.get_token_from_index(tag_id,
                                                         namespace="labels")
             assert tag in {'O', 'I-ORG', 'I-PER', 'I-LOC'}
Esempio n. 6
0
    def _sentences_to_ids(self, sentences):
        indexer = ELMoTokenCharactersIndexer()

        # For each sentence, first create a TextField, then create an instance
        instances = []
        for sentence in sentences:
            tokens = [Token(token) for token in sentence]
            field = TextField(tokens, {'character_ids': indexer})
            instance = Instance({'elmo': field})
            instances.append(instance)

        dataset = Batch(instances)
        vocab = Vocabulary()
        dataset.index_instances(vocab)
        return dataset.as_tensor_dict()['elmo']['character_ids']
Esempio n. 7
0
 def setUp(self):
     token_indexer = SingleIdTokenIndexer("tokens")
     text_field = TextField([Token(t) for t in ["a", "a", "a", "a", "b", "b", "c", "c", "c"]],
                            {"tokens": token_indexer})
     self.instance = Instance({"text": text_field})
     self.dataset = Batch([self.instance])
     super(TestVocabulary, self).setUp()
Esempio n. 8
0
    def _create_batches(self, instances: Iterable[Instance],
                        shuffle: bool) -> Iterable[Batch]:
        for instance_list in self._memory_sized_lists(instances):

            instance_list = sort_by_padding(instance_list, self._sorting_keys,
                                            self.vocab, self._padding_noise)

            batches = []
            for batch_instances in lazy_groups_of(iter(instance_list),
                                                  self._batch_size):
                for possibly_smaller_batches in self._ensure_batch_is_sufficiently_small(
                        batch_instances):
                    batches.append(Batch(possibly_smaller_batches))

            move_to_front = self._biggest_batch_first and len(batches) > 1
            if move_to_front:
                # We'll actually pop the last _two_ batches, because the last one might not be full.
                last_batch = batches.pop()
                penultimate_batch = batches.pop()
            if shuffle:
                random.shuffle(batches)
            else:
                logger.warning(
                    "shuffle parameter is set to False,"
                    " while bucket iterators by definition change the order of your data."
                )
            if move_to_front:
                batches.insert(0, penultimate_batch)
                batches.insert(0, last_batch)

            yield from batches
Esempio n. 9
0
    def get_vocab_and_both_elmo_indexed_ids(batch: List[List[str]]):
        instances = []
        indexer = ELMoTokenCharactersIndexer()
        indexer2 = SingleIdTokenIndexer()
        for sentence in batch:
            tokens = [Token(token) for token in sentence]
            field = TextField(tokens, {
                'character_ids': indexer,
                'tokens': indexer2
            })
            instance = Instance({"elmo": field})
            instances.append(instance)

        dataset = Batch(instances)
        vocab = Vocabulary.from_instances(instances)
        dataset.index_instances(vocab)
        return vocab, dataset.as_tensor_dict()["elmo"]
Esempio n. 10
0
 def _create_batches(self, instances: Iterable[Instance], shuffle: bool) -> Iterable[Batch]:
     # First break the dataset into memory-sized lists:
     for instance_list in self._memory_sized_lists(instances):
         if shuffle:
             random.shuffle(instance_list)
         iterator = iter(instance_list)
         # Then break each memory-sized list into batches.
         for batch_instances in lazy_groups_of(iterator, self._batch_size):
             for possibly_smaller_batches in self._ensure_batch_is_sufficiently_small(batch_instances):
                 batch = Batch(possibly_smaller_batches)
                 yield batch
Esempio n. 11
0
    def test_invalid_vocab_extension(self):
        vocab_dir = self.TEST_DIR / 'vocab_save'
        original_vocab = Vocabulary(non_padded_namespaces=["tokens1"])
        original_vocab.add_token_to_namespace("a", namespace="tokens1")
        original_vocab.add_token_to_namespace("b", namespace="tokens1")
        original_vocab.add_token_to_namespace("p", namespace="tokens2")
        original_vocab.save_to_files(vocab_dir)
        text_field1 = TextField([Token(t) for t in ["a" "c"]],
                                {"tokens1": SingleIdTokenIndexer("tokens1")})
        text_field2 = TextField([Token(t) for t in ["p", "q", "r"]],
                                {"tokens2": SingleIdTokenIndexer("tokens2")})
        instances = Batch([Instance({"text1": text_field1, "text2": text_field2})])

        # Following 2 should give error: token1 is non-padded in original_vocab but not in instances
        params = Params({"directory_path": vocab_dir, "extend": True,
                         "non_padded_namespaces": []})
        with pytest.raises(ConfigurationError):
            _ = Vocabulary.from_params(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            params = Params({"non_padded_namespaces": []})
            extended_vocab.extend_from_instances(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            extended_vocab._extend(non_padded_namespaces=[],
                                   tokens_to_add={"tokens1": ["a"], "tokens2": ["p"]})

        # Following 2 should not give error: overlapping namespaces have same padding setting
        params = Params({"directory_path": vocab_dir, "extend": True,
                         "non_padded_namespaces": ["tokens1"]})
        Vocabulary.from_params(params, instances)
        extended_vocab = copy.copy(original_vocab)
        params = Params({"non_padded_namespaces": ["tokens1"]})
        extended_vocab.extend_from_instances(params, instances)
        extended_vocab = copy.copy(original_vocab)
        extended_vocab._extend(non_padded_namespaces=["tokens1"],
                               tokens_to_add={"tokens1": ["a"], "tokens2": ["p"]})

        # Following 2 should give error: token1 is padded in instances but not in original_vocab
        params = Params({"directory_path": vocab_dir, "extend": True,
                         "non_padded_namespaces": ["tokens1", "tokens2"]})
        with pytest.raises(ConfigurationError):
            _ = Vocabulary.from_params(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            params = Params({"non_padded_namespaces": ["tokens1", "tokens2"]})
            extended_vocab.extend_from_instances(params, instances)
        with pytest.raises(ConfigurationError):
            extended_vocab = copy.copy(original_vocab)
            extended_vocab._extend(non_padded_namespaces=["tokens1", "tokens2"],
                                   tokens_to_add={"tokens1": ["a"], "tokens2": ["p"]})
Esempio n. 12
0
    def test_max_vocab_size_partial_dict(self):
        indexers = {"tokens": SingleIdTokenIndexer(), "token_characters": TokenCharactersIndexer()}
        instance = Instance({
                'text': TextField([Token(w) for w in 'Abc def ghi jkl mno pqr stu vwx yz'.split(' ')], indexers)
        })
        dataset = Batch([instance])
        params = Params({
                "max_vocab_size": {
                        "tokens": 1
                }
        })

        vocab = Vocabulary.from_params(params=params, instances=dataset)
        assert len(vocab.get_index_to_token_vocabulary("tokens").values()) == 3 # 1 + 2
        assert len(vocab.get_index_to_token_vocabulary("token_characters").values()) == 28 # 26 + 2
Esempio n. 13
0
    def set_up_model(self, param_file, dataset_file):
        # pylint: disable=attribute-defined-outside-init
        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params['dataset_reader'])
        instances = reader.read(dataset_file)
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if 'vocabulary' in params:
            vocab_params = params['vocabulary']
            vocab = Vocabulary.from_params(params=vocab_params,
                                           instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.model = Model.from_params(vocab=self.vocab,
                                       params=params['model'])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(self.instances)
        self.dataset.index_instances(self.vocab)
Esempio n. 14
0
    def test_forward_pass_runs_correctly(self):
        batch = Batch(self.instances)
        batch.index_instances(self.vocab)
        training_tensors = batch.as_tensor_dict()
        output_dict = self.model(**training_tensors)

        metrics = self.model.get_metrics(reset=True)
        # We've set up the data such that there's a fake answer that consists of the whole
        # paragraph.  _Any_ valid prediction for that question should produce an F1 of greater than
        # zero, while if we somehow haven't been able to load the evaluation data, or there was an
        # error with using the evaluation script, this will fail.  This makes sure that we've
        # loaded the evaluation data correctly and have hooked things up to the official evaluation
        # script.
        assert metrics['f1'] > 0

        span_start_probs = output_dict['span_start_probs'][0].data.numpy()
        span_end_probs = output_dict['span_start_probs'][0].data.numpy()
        assert_almost_equal(numpy.sum(span_start_probs, -1), 1, decimal=6)
        assert_almost_equal(numpy.sum(span_end_probs, -1), 1, decimal=6)
        span_start, span_end = tuple(output_dict['best_span'][0].data.numpy())
        assert span_start >= 0
        assert span_start <= span_end
        assert span_end < self.instances[0].fields['passage'].sequence_length()
        assert isinstance(output_dict['best_span_str'][0], str)
Esempio n. 15
0
    def test_as_tensor_dict(self):
        dataset = Batch(self.instances)
        dataset.index_instances(self.vocab)
        padding_lengths = dataset.get_padding_lengths()
        tensors = dataset.as_tensor_dict(padding_lengths)
        text1 = tensors["text1"]["tokens"].detach().cpu().numpy()
        text2 = tensors["text2"]["tokens"].detach().cpu().numpy()

        numpy.testing.assert_array_almost_equal(text1, numpy.array([[2, 3, 4, 5, 6],
                                                                    [1, 3, 4, 5, 6]]))
        numpy.testing.assert_array_almost_equal(text2, numpy.array([[2, 3, 4, 1, 5, 6],
                                                                    [2, 3, 1, 0, 0, 0]]))
Esempio n. 16
0
def dry_run_from_params(params: Params, serialization_dir: str) -> None:
    prepare_environment(params)

    vocab_params = params.pop("vocabulary", {})
    os.makedirs(serialization_dir, exist_ok=True)
    vocab_dir = os.path.join(serialization_dir, "vocabulary")

    if os.path.isdir(vocab_dir) and os.listdir(vocab_dir) is not None:
        raise ConfigurationError("The 'vocabulary' directory in the provided "
                                 "serialization directory is non-empty")

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("From dataset instances, %s will be considered for vocabulary creation.",
                ", ".join(datasets_for_vocab_creation))

    instances = [instance for key, dataset in all_datasets.items()
                 for instance in dataset
                 if key in datasets_for_vocab_creation]

    vocab = Vocabulary.from_params(vocab_params, instances)
    dataset = Batch(instances)
    dataset.index_instances(vocab)
    dataset.print_statistics()
    vocab.print_statistics()

    logger.info(f"writing the vocabulary to {vocab_dir}.")
    vocab.save_to_files(vocab_dir)

    model = Model.from_params(vocab=vocab, params=params.pop('model'))
    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)
Esempio n. 17
0
    def test_saving_and_loading_works_with_byte_encoding(self):
        # We're going to set a vocabulary from a TextField using byte encoding, index it, save the
        # vocab, load the vocab, then index the text field again, and make sure we get the same
        # result.
        tokenizer = CharacterTokenizer(byte_encoding='utf-8')
        token_indexer = TokenCharactersIndexer(character_tokenizer=tokenizer)
        tokens = [Token(t) for t in ["Øyvind", "für", "汉字"]]
        text_field = TextField(tokens, {"characters": token_indexer})
        dataset = Batch([Instance({"sentence": text_field})])
        vocab = Vocabulary.from_instances(dataset)
        text_field.index(vocab)
        indexed_tokens = deepcopy(text_field._indexed_tokens)  # pylint: disable=protected-access

        vocab_dir = self.TEST_DIR / 'vocab_save'
        vocab.save_to_files(vocab_dir)
        vocab2 = Vocabulary.from_files(vocab_dir)
        text_field2 = TextField(tokens, {"characters": token_indexer})
        text_field2.index(vocab2)
        indexed_tokens2 = deepcopy(text_field2._indexed_tokens)  # pylint: disable=protected-access
        assert indexed_tokens == indexed_tokens2
Esempio n. 18
0
    def test_from_params_extend_config(self):

        vocab_dir = self.TEST_DIR / 'vocab_save'
        original_vocab = Vocabulary(non_padded_namespaces=["tokens"])
        original_vocab.add_token_to_namespace("a", namespace="tokens")
        original_vocab.save_to_files(vocab_dir)

        text_field = TextField([Token(t) for t in ["a", "b"]],
                               {"tokens": SingleIdTokenIndexer("tokens")})
        instances = Batch([Instance({"text": text_field})])

        # If you ask to extend vocab from `directory_path`, instances must be passed
        # in Vocabulary constructor, or else there is nothing to extend to.
        params = Params({"directory_path": vocab_dir, "extend": True})
        with pytest.raises(ConfigurationError):
            _ = Vocabulary.from_params(params)

        # If you ask to extend vocab, `directory_path` key must be present in params,
        # or else there is nothing to extend from.
        params = Params({"extend": True})
        with pytest.raises(ConfigurationError):
            _ = Vocabulary.from_params(params, instances)
Esempio n. 19
0
class ModelTestCase(AllenNlpTestCase):
    """
    A subclass of :class:`~allennlp.common.testing.test_case.AllenNlpTestCase`
    with added methods for testing :class:`~allennlp.models.model.Model` subclasses.
    """
    def set_up_model(self, param_file, dataset_file):
        # pylint: disable=attribute-defined-outside-init
        self.param_file = param_file
        params = Params.from_file(self.param_file)

        reader = DatasetReader.from_params(params['dataset_reader'])
        instances = reader.read(dataset_file)
        # Use parameters for vocabulary if they are present in the config file, so that choices like
        # "non_padded_namespaces", "min_count" etc. can be set if needed.
        if 'vocabulary' in params:
            vocab_params = params['vocabulary']
            vocab = Vocabulary.from_params(params=vocab_params,
                                           instances=instances)
        else:
            vocab = Vocabulary.from_instances(instances)
        self.vocab = vocab
        self.instances = instances
        self.model = Model.from_params(vocab=self.vocab,
                                       params=params['model'])

        # TODO(joelgrus) get rid of these
        # (a lot of the model tests use them, so they'll have to be changed)
        self.dataset = Batch(self.instances)
        self.dataset.index_instances(self.vocab)

    def ensure_model_can_train_save_and_load(self,
                                             param_file: str,
                                             tolerance: float = 1e-4,
                                             cuda_device: int = -1):
        save_dir = self.TEST_DIR / "save_and_load_test"
        archive_file = save_dir / "model.tar.gz"
        model = train_model_from_file(param_file, save_dir)
        loaded_model = load_archive(archive_file,
                                    cuda_device=cuda_device).model
        state_keys = model.state_dict().keys()
        loaded_state_keys = loaded_model.state_dict().keys()
        assert state_keys == loaded_state_keys
        # First we make sure that the state dict (the parameters) are the same for both models.
        for key in state_keys:
            assert_allclose(model.state_dict()[key].cpu().numpy(),
                            loaded_model.state_dict()[key].cpu().numpy(),
                            err_msg=key)
        params = Params.from_file(param_file)
        reader = DatasetReader.from_params(params['dataset_reader'])

        # Need to duplicate params because Iterator.from_params will consume.
        iterator_params = params['iterator']
        iterator_params2 = Params(copy.deepcopy(iterator_params.as_dict()))

        iterator = DataIterator.from_params(iterator_params)
        iterator2 = DataIterator.from_params(iterator_params2)

        # We'll check that even if we index the dataset with each model separately, we still get
        # the same result out.
        model_dataset = reader.read(params['validation_data_path'])
        iterator.index_with(model.vocab)
        model_batch = next(
            iterator(model_dataset, shuffle=False, cuda_device=cuda_device))

        loaded_dataset = reader.read(params['validation_data_path'])
        iterator2.index_with(loaded_model.vocab)
        loaded_batch = next(
            iterator2(loaded_dataset, shuffle=False, cuda_device=cuda_device))

        # Check gradients are None for non-trainable parameters and check that
        # trainable parameters receive some gradient if they are trainable.
        self.check_model_computes_gradients_correctly(model, model_batch)

        # The datasets themselves should be identical.
        assert model_batch.keys() == loaded_batch.keys()
        for key in model_batch.keys():
            self.assert_fields_equal(model_batch[key], loaded_batch[key], key,
                                     1e-6)

        # Set eval mode, to turn off things like dropout, then get predictions.
        model.eval()
        loaded_model.eval()
        # Models with stateful RNNs need their states reset to have consistent
        # behavior after loading.
        for model_ in [model, loaded_model]:
            for module in model_.modules():
                if hasattr(module, 'stateful') and module.stateful:
                    module.reset_states()
        model_predictions = model(**model_batch)
        loaded_model_predictions = loaded_model(**loaded_batch)

        # Check loaded model's loss exists and we can compute gradients, for continuing training.
        loaded_model_loss = loaded_model_predictions["loss"]
        assert loaded_model_loss is not None
        loaded_model_loss.backward()

        # Both outputs should have the same keys and the values for these keys should be close.
        for key in model_predictions.keys():
            self.assert_fields_equal(model_predictions[key],
                                     loaded_model_predictions[key],
                                     name=key,
                                     tolerance=tolerance)

        return model, loaded_model

    def assert_fields_equal(self,
                            field1,
                            field2,
                            name: str,
                            tolerance: float = 1e-6) -> None:
        if isinstance(field1, torch.Tensor):
            assert_allclose(field1.detach().cpu().numpy(),
                            field2.detach().cpu().numpy(),
                            rtol=tolerance,
                            err_msg=name)
        elif isinstance(field1, dict):
            assert field1.keys() == field2.keys()
            for key in field1:
                self.assert_fields_equal(field1[key],
                                         field2[key],
                                         tolerance=tolerance,
                                         name=name + '.' + str(key))
        elif isinstance(field1, (list, tuple)):
            assert len(field1) == len(field2)
            for i, (subfield1, subfield2) in enumerate(zip(field1, field2)):
                self.assert_fields_equal(subfield1,
                                         subfield2,
                                         tolerance=tolerance,
                                         name=name + f"[{i}]")
        elif isinstance(field1, (float, int)):
            assert_allclose([field1], [field2], rtol=tolerance, err_msg=name)
        else:
            assert field1 == field2

    @staticmethod
    def check_model_computes_gradients_correctly(model, model_batch):
        model.zero_grad()
        result = model(**model_batch)
        result["loss"].backward()
        has_zero_or_none_grads = {}
        for name, parameter in model.named_parameters():
            zeros = torch.zeros(parameter.size())
            if parameter.requires_grad:

                if parameter.grad is None:
                    has_zero_or_none_grads[
                        name] = "No gradient computed (i.e parameter.grad is None)"

                elif parameter.grad.is_sparse or parameter.grad.data.is_sparse:
                    pass

                # Some parameters will only be partially updated,
                # like embeddings, so we just check that any gradient is non-zero.
                elif (parameter.grad.cpu() == zeros).all():
                    has_zero_or_none_grads[
                        name] = f"zeros with shape ({tuple(parameter.grad.size())})"
            else:
                assert parameter.grad is None

        if has_zero_or_none_grads:
            for name, grad in has_zero_or_none_grads.items():
                print(f"Parameter: {name} had incorrect gradient: {grad}")
            raise Exception(
                "Incorrect gradients found. See stdout for more info.")

    def ensure_batch_predictions_are_consistent(self):
        self.model.eval()
        single_predictions = []
        for i, instance in enumerate(self.instances):
            dataset = Batch([instance])
            tensors = dataset.as_tensor_dict(dataset.get_padding_lengths())
            result = self.model(**tensors)
            single_predictions.append(result)
        full_dataset = Batch(self.instances)
        batch_tensors = full_dataset.as_tensor_dict(
            full_dataset.get_padding_lengths())
        batch_predictions = self.model(**batch_tensors)
        for i, instance_predictions in enumerate(single_predictions):
            for key, single_predicted in instance_predictions.items():
                tolerance = 1e-6
                if 'loss' in key:
                    # Loss is particularly unstable; we'll just be satisfied if everything else is
                    # close.
                    continue
                single_predicted = single_predicted[0]
                batch_predicted = batch_predictions[key][i]
                if isinstance(single_predicted, torch.Tensor):
                    if single_predicted.size() != batch_predicted.size():
                        slices = tuple(
                            slice(0, size) for size in single_predicted.size())
                        batch_predicted = batch_predicted[slices]
                    assert_allclose(single_predicted.data.numpy(),
                                    batch_predicted.data.numpy(),
                                    atol=tolerance,
                                    err_msg=key)
                else:
                    assert single_predicted == batch_predicted, key
Esempio n. 20
0
 def test_padding_lengths_uses_max_instance_lengths(self):
     dataset = Batch(self.instances)
     dataset.index_instances(self.vocab)
     padding_lengths = dataset.get_padding_lengths()
     assert padding_lengths == {"text1": {"num_tokens": 5}, "text2": {"num_tokens": 6}}
Esempio n. 21
0
 def test_instances_must_have_homogeneous_fields(self):
     instance1 = Instance({"tag": (LabelField(1, skip_indexing=True))})
     instance2 = Instance({"words": TextField([Token("hello")], {})})
     with pytest.raises(ConfigurationError):
         _ = Batch([instance1, instance2])
Esempio n. 22
0
    def test_valid_vocab_extension(self):
        vocab_dir = self.TEST_DIR / 'vocab_save'
        extension_ways = ["from_params", "extend_from_instances"]
        # Test: padded/non-padded common namespaces are extending appropriately
        non_padded_namespaces_list = [[], ["tokens"]]
        for non_padded_namespaces in non_padded_namespaces_list:
            original_vocab = Vocabulary(non_padded_namespaces=non_padded_namespaces)
            original_vocab.add_token_to_namespace("d", namespace="tokens")
            original_vocab.add_token_to_namespace("a", namespace="tokens")
            original_vocab.add_token_to_namespace("b", namespace="tokens")
            text_field = TextField([Token(t) for t in ["a", "d", "c", "e"]],
                                   {"tokens": SingleIdTokenIndexer("tokens")})
            instances = Batch([Instance({"text": text_field})])
            for way in extension_ways:
                if way == "extend_from_instances":
                    extended_vocab = copy.copy(original_vocab)
                    params = Params({"non_padded_namespaces": non_padded_namespaces})
                    extended_vocab.extend_from_instances(params, instances)
                else:
                    shutil.rmtree(vocab_dir, ignore_errors=True)
                    original_vocab.save_to_files(vocab_dir)
                    params = Params({"directory_path": vocab_dir, "extend": True,
                                     "non_padded_namespaces": non_padded_namespaces})
                    extended_vocab = Vocabulary.from_params(params, instances)

                extra_count = 2 if extended_vocab.is_padded("tokens") else 0
                assert extended_vocab.get_token_index("d", "tokens") == 0 + extra_count
                assert extended_vocab.get_token_index("a", "tokens") == 1 + extra_count
                assert extended_vocab.get_token_index("b", "tokens") == 2 + extra_count

                assert extended_vocab.get_token_index("c", "tokens") # should be present
                assert extended_vocab.get_token_index("e", "tokens") # should be present

                assert extended_vocab.get_vocab_size("tokens") == 5 + extra_count

        # Test: padded/non-padded non-common namespaces are extending appropriately
        non_padded_namespaces_list = [[],
                                      ["tokens1"],
                                      ["tokens1", "tokens2"]]
        for non_padded_namespaces in non_padded_namespaces_list:
            original_vocab = Vocabulary(non_padded_namespaces=non_padded_namespaces)
            original_vocab.add_token_to_namespace("a", namespace="tokens1") # index2
            text_field = TextField([Token(t) for t in ["b"]],
                                   {"tokens2": SingleIdTokenIndexer("tokens2")})
            instances = Batch([Instance({"text": text_field})])

            for way in extension_ways:
                if way == "extend_from_instances":
                    extended_vocab = copy.copy(original_vocab)
                    params = Params({"non_padded_namespaces": non_padded_namespaces})
                    extended_vocab.extend_from_instances(params, instances)
                else:
                    shutil.rmtree(vocab_dir, ignore_errors=True)
                    original_vocab.save_to_files(vocab_dir)
                    params = Params({"directory_path": vocab_dir, "extend": True,
                                     "non_padded_namespaces": non_padded_namespaces})
                    extended_vocab = Vocabulary.from_params(params, instances)

                # Should have two namespaces
                assert len(extended_vocab._token_to_index) == 2

                extra_count = 2 if extended_vocab.is_padded("tokens1") else 0
                assert extended_vocab.get_vocab_size("tokens1") == 1 + extra_count

                extra_count = 2 if extended_vocab.is_padded("tokens2") else 0
                assert extended_vocab.get_vocab_size("tokens2") == 1 + extra_count
Esempio n. 23
0
    def test_from_params_valid_vocab_extension_thoroughly(self):
        '''
        Tests for Valid Vocab Extension thoroughly: Vocab extension is valid
        when overlapping namespaces have same padding behaviour (padded/non-padded)
        Summary of namespace paddings in this test:
        original_vocab namespaces
            tokens0     padded
            tokens1     non-padded
            tokens2     padded
            tokens3     non-padded
        instances namespaces
            tokens0     padded
            tokens1     non-padded
            tokens4     padded
            tokens5     non-padded
        TypicalExtention example: (of tokens1 namespace)
        -> original_vocab index2token
           apple          #0->apple
           bat            #1->bat
           cat            #2->cat
        -> Token to be extended with: cat, an, apple, banana, atom, bat
        -> extended_vocab: index2token
           apple           #0->apple
           bat             #1->bat
           cat             #2->cat
           an              #3->an
           atom            #4->atom
           banana          #5->banana
        '''

        vocab_dir = self.TEST_DIR / 'vocab_save'
        original_vocab = Vocabulary(non_padded_namespaces=["tokens1", "tokens3"])
        original_vocab.add_token_to_namespace("apple", namespace="tokens0") # index:2
        original_vocab.add_token_to_namespace("bat", namespace="tokens0")   # index:3
        original_vocab.add_token_to_namespace("cat", namespace="tokens0")   # index:4

        original_vocab.add_token_to_namespace("apple", namespace="tokens1") # index:0
        original_vocab.add_token_to_namespace("bat", namespace="tokens1")   # index:1
        original_vocab.add_token_to_namespace("cat", namespace="tokens1")   # index:2

        original_vocab.add_token_to_namespace("a", namespace="tokens2") # index:0
        original_vocab.add_token_to_namespace("b", namespace="tokens2") # index:1
        original_vocab.add_token_to_namespace("c", namespace="tokens2") # index:2

        original_vocab.add_token_to_namespace("p", namespace="tokens3") # index:0
        original_vocab.add_token_to_namespace("q", namespace="tokens3") # index:1

        original_vocab.save_to_files(vocab_dir)

        text_field0 = TextField([Token(t) for t in ["cat", "an", "apple", "banana", "atom", "bat"]],
                                {"tokens0": SingleIdTokenIndexer("tokens0")})
        text_field1 = TextField([Token(t) for t in ["cat", "an", "apple", "banana", "atom", "bat"]],
                                {"tokens1": SingleIdTokenIndexer("tokens1")})
        text_field4 = TextField([Token(t) for t in ["l", "m", "n", "o"]],
                                {"tokens4": SingleIdTokenIndexer("tokens4")})
        text_field5 = TextField([Token(t) for t in ["x", "y", "z"]],
                                {"tokens5": SingleIdTokenIndexer("tokens5")})
        instances = Batch([Instance({"text0": text_field0, "text1": text_field1,
                                     "text4": text_field4, "text5": text_field5})])

        params = Params({"directory_path": vocab_dir,
                         "extend": True,
                         "non_padded_namespaces": ["tokens1", "tokens5"]})
        extended_vocab = Vocabulary.from_params(params, instances)

        # namespaces: tokens0, tokens1 is common.
        # tokens2, tokens3 only vocab has. tokens4, tokens5 only instances
        extended_namespaces = {*extended_vocab._token_to_index}
        assert extended_namespaces == {"tokens{}".format(i) for i in range(6)}

        # # Check that _non_padded_namespaces list is consistent after extension
        assert extended_vocab._non_padded_namespaces == {"tokens1", "tokens3", "tokens5"}

        # # original_vocab["tokens1"] has 3 tokens, instances of "tokens1" ns has 5 tokens. 2 overlapping
        assert extended_vocab.get_vocab_size("tokens1") == 6
        assert extended_vocab.get_vocab_size("tokens0") == 8 # 2 extra overlapping because padded

        # namespace tokens3, tokens4 was only in original_vocab,
        # and its token count should be same in extended_vocab
        assert extended_vocab.get_vocab_size("tokens2") == original_vocab.get_vocab_size("tokens2")
        assert extended_vocab.get_vocab_size("tokens3") == original_vocab.get_vocab_size("tokens3")

        # namespace tokens2 was only in instances,
        # and its token count should be same in extended_vocab
        assert extended_vocab.get_vocab_size("tokens4") == 6 # l,m,n,o + oov + padding
        assert extended_vocab.get_vocab_size("tokens5") == 3 # x,y,z

        # Word2index mapping of all words in all namespaces of original_vocab
        # should be maintained in extended_vocab
        for namespace, token2index in original_vocab._token_to_index.items():
            for token, _ in token2index.items():
                vocab_index = original_vocab.get_token_index(token, namespace)
                extended_vocab_index = extended_vocab.get_token_index(token, namespace)
                assert vocab_index == extended_vocab_index
        # And same for Index2Word mapping
        for namespace, index2token in original_vocab._index_to_token.items():
            for index, _ in index2token.items():
                vocab_token = original_vocab.get_token_from_index(index, namespace)
                extended_vocab_token = extended_vocab.get_token_from_index(index, namespace)
                assert vocab_token == extended_vocab_token