Esempio n. 1
0
def initialize_fluent_streams(problem):

    fluents = problem.fluents()
    new_axioms = []
    for stream in problem.streams:

        stream.fluent_domain = tuple(a for a in stream.domain
                                     if a.head.function in fluents)
        stream.domain = tuple(a for a in stream.domain
                              if a not in stream.fluent_domain)
        stream.predicates = []
        for i, o in enumerate(stream.outputs):

            params = stream.inputs + (X, )
            predicate = Predicate(params, name='{}{}'.format(stream.name, i))
            stream.predicates.append(predicate)
            new_axioms.append(
                Axiom(params,
                      pre=[predicate(*params)] +
                      [Computable(i) for i in stream.inputs],
                      eff=Computable(X)))

    new_axioms.append(Axiom(X, pre=[Computed(X)], eff=Computable(X)))
    for action in problem.actions:
        action.preconditions = action.preconditions + \
            tuple(map(Computable, action.parameters))
    problem.axioms += new_axioms
Esempio n. 2
0
def solve_streams_new(universe, evaluations, plan, bound_streams, start_time,
                      max_time, defer, **kwargs):
    planner = 'ff-astar'
    if plan is None:
        return None, plan
    if not plan:
        return [], plan
    OrderPreds = [Predicate([]) for _ in xrange(len(plan) + 1)]
    action_from_instance = {}
    for i, (action, args) in enumerate(plan):

        instance = action.instantiate(args)
        instance.preconditions = filter(
            lambda p: isinstance(p, Atom) or not universe.is_derived(p),
            instance.preconditions) + (OrderPreds[i](), )
        instance.effects = list(instance.effects) + \
            [~OrderPreds[i](), OrderPreds[i + 1]()]
        action_from_instance[instance] = (action, args)
    axioms = [
        axiom.instantiate(args) for axiom, args in universe.axiom_instances()
    ]
    stream_actions, stream_axioms = stream_action_instances(
        evaluations, bound_streams)

    goal = [OrderPreds[-1]()]
    downward_problem = DownwardProblem(
        evaluations | {OrderPreds[0]()}, goal,
        action_from_instance.keys() + stream_actions, axioms + stream_axioms)
    combined_plan = solve_sas(downward_problem,
                              planner=planner,
                              max_time=(max_time - (time.time() - start_time)),
                              verbose=False,
                              **kwargs)
    if combined_plan is None:
        return None, plan

    combined_plan = [
        action_from_instance.get(op, (op, tuple())) for op in combined_plan
    ]
    combined_plan = defer_streams(
        combined_plan) if defer else prioritize_streams(combined_plan)

    stream_plan, action_plan = [], []
    for i, (action, args) in enumerate(combined_plan):
        if (action, args) in plan:
            action_plan.append((action, args))
        elif action_plan:

            action_plan.append((action, args))

        else:
            stream_plan.append(action.bound_stream)
    return stream_plan, action_plan
Esempio n. 3
0
def make_stream_operators(problem, effort_weight):
    stream_actions = []
    stream_axioms = []
    fluents = problem.fluents()
    for stream in problem.streams:

        params = stream.inputs + stream.outputs
        stream.predicate = Predicate(params)
        preconditions = list(stream.domain) + [stream.predicate(*params)]
        effects = list(stream.graph)
        if effort_weight is not None:
            effort = 1

            effects.append(Increase(TotalCost(), effort_weight * effort))

        action = Action(stream.name, params, preconditions, effects)
        action.stream = stream
        stream.fluent_domain = tuple(a for a in stream.domain
                                     if a.head.function in fluents)
        stream.domain = tuple(a for a in stream.domain
                              if a not in stream.fluent_domain)
        stream_actions.append(action)
    return stream_actions, stream_axioms
Esempio n. 4
0
def create_problem(cupSize=(3, 4),
                   kettleSize=(5, 6),
                   cupInitPos=(5, -9, 0),
                   kettleInitPos=(-5, -9, 0),
                   faucetPos=(5, 1, 0),
                   kettleGoalPos=(-5, -9, 0),
                   goalPosEps=0.5,
                   maxMoveDist=10.0,
                   domain=[(-20, 20), (-9, 20), (-np.pi, np.pi)],
                   verboseFns=True):

    CUP = '?cup'
    POS1 = '?pos1'
    POS2 = '?pos2'
    POS3 = '?pos3'
    KETTLE = '?kettle'
    WATER = '?water'
    FAUCET = '?faucet'

    IsCup = Predicate([CUP])
    IsKettle = Predicate([KETTLE])
    IsWater = Predicate([WATER])
    IsFaucet = Predicate([FAUCET])
    LegalPos = Predicate([POS1])
    CanGetWater = Predicate([POS1])
    HoldsWater = Predicate([KETTLE])
    CanPour = Predicate([POS1, POS2, POS3])

    AtPos = Predicate([CUP, POS1])
    WaterInKettle = Predicate([WATER, KETTLE])
    WaterBoiled = Predicate([WATER, KETTLE])

    HasBoiledWater = Predicate([KETTLE])

    CanMove = Predicate([POS1, POS2], domain=[LegalPos(POS1), LegalPos(POS2)],
                        fn=lambda x, y: (distance(x, y) <= maxMoveDist))
    CloseTo = Predicate([POS1, POS2], domain=[LegalPos(POS1), LegalPos(POS2)],
                        fn=lambda x, y: (distance(x, y) <= goalPosEps))

    MoveCost = NonNegFunction([POS1, POS2], domain=[LegalPos(POS1), LegalPos(POS2)],
                              fn=lambda p1, p2: scale_cost(distance(p1, p2)))

    def getWaterTest(p):
        (x, y, z) = p
        result = (faucetPos[0] - 1 <= x <= faucetPos[0] + 1) and (faucetPos[1] -
                                                                  cupSize[1] - 1 <= y <= faucetPos[1] - cupSize[1]) and (-0.05 <= z <= 0.05)
        if verboseFns and not result:
            print 'cannot get water from:', p
        return result

    def fill_cost(pos):
        success_cost = 1
        fail_cost = 10
        p_success = 0.75 if getWaterTest(pos) else 0.25
        expected_cost = p_success * success_cost + (1 - p_success) * fail_cost
        return scale_cost(expected_cost)

    FillCost = NonNegFunction([POS1], domain=[LegalPos(POS1)], fn=fill_cost)

    rename_functions(locals())

    actions = [
        Action(name='Move', param=[CUP, POS1, POS2],
               pre=[IsCup(CUP), CanMove(POS1, POS2),
                    AtPos(CUP, POS1)],
               eff=[AtPos(CUP, POS2),
                    ~AtPos(CUP, POS1),
                    Increase(TotalCost(), MoveCost(POS1, POS2))]),

        Action(name='Fill', param=[CUP, FAUCET, POS1, WATER],
               pre=[HoldsWater(CUP), IsFaucet(FAUCET), CanGetWater(POS1), IsWater(WATER),
                    AtPos(CUP, POS1), AtPos(FAUCET, faucetPos)],
               eff=[WaterInKettle(WATER, CUP),
                    Increase(TotalCost(), FillCost(POS1))]),

        Action(name='Pour', param=[CUP, KETTLE, POS1, POS3, POS2, WATER],
               pre=[HoldsWater(CUP), HoldsWater(KETTLE), CanPour(POS1, POS3, POS2), IsWater(WATER),
                    AtPos(CUP, POS1), AtPos(KETTLE, POS2), WaterInKettle(WATER, CUP)],
               eff=[WaterInKettle(WATER, KETTLE), AtPos(CUP, POS3),
                    ~WaterInKettle(WATER, CUP), ~AtPos(CUP, POS1),
                    Increase(TotalCost(), scale_cost(1))]),

        Action(name='Boil', param=[KETTLE, WATER, POS1],
               pre=[IsKettle(KETTLE), IsWater(WATER), CloseTo(kettleGoalPos, POS1),
                    AtPos(KETTLE, POS1), WaterInKettle(WATER, KETTLE)],
               eff=[WaterBoiled(WATER, KETTLE),
                    Increase(TotalCost(), scale_cost(1))]),
    ]

    axioms = [
        Axiom(param=[WATER, KETTLE],
              pre=[IsWater(WATER), IsKettle(KETTLE),
                   WaterInKettle(WATER, KETTLE), WaterBoiled(WATER, KETTLE)],
              eff=HasBoiledWater(KETTLE)),
    ]

    def legalTest(rp):
        (x, y, z) = rp
        result = (domain[0][0] <= x <= domain[0][1]) and (
            domain[1][0] <= y <= domain[1][1]) and (domain[2][0] <= z <= domain[2][1])
        if verboseFns and not result:
            print 'not legal:', rp
        return result

    def randPos():
        while True:
            pos = tuple(random.uniform(a[0], a[1]) for a in domain)
            if verboseFns:
                print 'randPos:', pos
            yield (pos,)

    def genMove(p):
        while True:
            pos = tuple(random.uniform(-1, 1) * maxMoveDist + a for a in p)
            if distance(pos, p) < maxMoveDist and legalTest(pos):
                if verboseFns:
                    print 'genMove:', pos
                yield (pos,)

    def genClosePos(p):
        while True:
            pos = tuple(random.uniform(-1, 1) * goalPosEps + a for a in p)
            if (distance(pos, p) < goalPosEps) and legalTest(pos):
                if verboseFns:
                    print 'genClosePos:', pos
                yield (pos,)

    def genPourPos(kpos):

        while True:
            x = kpos[0] + random.uniform((cupSize[0] / 2.0 + kettleSize[0] / 2.0),
                                         (cupSize[0] / 2.0 + kettleSize[0] / 2.0 + cupSize[1] / 5.0), )
            y = kpos[1] + random.uniform(kettleSize[1] + 2, kettleSize[1] + 5)
            initpos = (x, y, 0)
            endpos = (x, y, np.pi / 1.4 * np.sign(x - kpos[0]))
            if legalTest(initpos) and legalTest(endpos):
                if verboseFns:
                    print 'genPourPos:', initpos, endpos
                yield (initpos, endpos)
            elif verboseFns:
                print 'genPourPos illegal:', initpos, endpos

    def genGetWaterPos():
        while True:
            pos = (random.uniform(-1, 1) * goalPosEps + faucetPos[0],
                   random.uniform(-cupSize[1] - 1, -cupSize[1]) + faucetPos[1],
                   0)
            if legalTest(pos):
                if verboseFns:
                    print 'genGetWaterPos:', pos
                yield (pos,)

    streams = [

        GenStream(inp=[], domain=[], fn=genGetWaterPos,
                  out=[POS2], graph=[LegalPos(POS2), CanGetWater(POS2)]),
        GenStream(inp=[], domain=[], fn=randPos,
                  out=[POS1], graph=[LegalPos(POS1)]),

        GenStream(inp=[POS1], domain=[LegalPos(POS1)], fn=genMove,
                  out=[POS2], graph=[LegalPos(POS2), CanMove(POS1, POS2)]),
        GenStream(inp=[POS1], domain=[LegalPos(POS1)], fn=genClosePos,
                  out=[POS2], graph=[LegalPos(POS2), CloseTo(POS1, POS2)]),
        GenStream(inp=[POS2], domain=[LegalPos(POS2)], fn=genPourPos,
                  out=[POS1, POS3], graph=[CanPour(POS1, POS3, POS2), LegalPos(POS1), LegalPos(POS3)]),


        TestStream(inp=[POS1], domain=[LegalPos(POS1)], test=getWaterTest,
                   graph=[CanGetWater(POS1)]),
    ]

    kettle = 'kettle'
    cup = 'cup'
    faucet = 'faucet'
    water = 'water'

    initial_atoms = [

        IsKettle(kettle),
        IsCup(cup),
        IsFaucet(faucet),
        IsWater(water),
        HoldsWater(cup),
        HoldsWater(kettle),
        LegalPos(cupInitPos),
        LegalPos(kettleInitPos),
        LegalPos(kettleGoalPos),
        LegalPos(faucetPos),


        AtPos(kettle, kettleInitPos),
        AtPos(faucet, faucetPos),
        AtPos(cup, cupInitPos),


        initialize(TotalCost(), 0),
    ]

    goal_literals = [
        AtPos(cup, cupInitPos),
        HasBoiledWater(kettle),
    ]

    objective = TotalCost()

    return Problem(initial_atoms, goal_literals, actions, axioms, streams, objective=objective)
Esempio n. 5
0
def main(n=2, bound='unique'):
    initial_conf = CONF(-1)

    blocks = ['b{}'.format(i) for i in xrange(n)]
    initial_poses = {b: POSE(b, i) for i, b in enumerate(blocks)}

    goal_poses = {'b0': POSE('b0', 1)}

    Block = Predicate('?b')
    IsPose = Predicate('?b ?p')
    Conf = Predicate('?q')

    Kin = Predicate('?b ?q ?p')
    Collision = Predicate('?b ?p ?b2 ?p2',
                          domain=[IsPose('?b', '?p'),
                                  IsPose('?b2', '?p2')],
                          fn=lambda b, p, b2, p2: p.value == p2.value,
                          eager=True,
                          bound=False)

    AtConf = Predicate('?q')
    AtPose = Predicate('?b ?p')
    Holding = Predicate('?b')
    HandEmpty = Predicate('')

    Unsafe = Predicate('?b ?p')

    rename_functions(locals())

    streams = [
        Stream(name='placement',
               inp=['?b'],
               domain=[Block('?b')],
               fn=PoseGen,
               out='?p',
               graph=[IsPose('?b', '?p')],
               bound=bound),
        FnStream(name='ik',
                 inp='?b ?p',
                 domain=[IsPose('?b', '?p')],
                 fn=lambda b, p: (CONF(p.value), ),
                 out='?q',
                 graph=[Kin('?b', '?q', '?p'),
                        Conf('?q')],
                 bound=bound),
    ]
    actions = [
        Action(name='Move',
               param='?q1 ?q2',
               pre=[Conf('?q1'), Conf('?q2'),
                    AtConf('?q1')],
               eff=[AtConf('?q2'), ~AtConf('?q1'),
                    Increase(TotalCost(), 1)]),
        Action(name='Pick',
               param='?b ?p ?q',
               pre=[
                   Kin('?b', '?q', '?p'),
                   AtPose('?b', '?p'),
                   HandEmpty(),
                   AtConf('?q')
               ],
               eff=[
                   Holding('?b'), ~AtPose('?b', '?p'), ~HandEmpty(),
                   Increase(TotalCost(), 1)
               ]),
        Action(name='Place',
               param='?b ?p ?q',
               pre=[
                   Kin('?b', '?q', '?p'),
                   Holding('?b'),
                   AtConf('?q'), ~Unsafe('?b', '?p')
               ],
               eff=[
                   AtPose('?b', '?p'),
                   HandEmpty(), ~Holding('?b'),
                   Increase(TotalCost(), 1)
               ]),
    ]

    axioms = [
        Axiom(param='?b ?p ?b2 ?p2',
              pre=[Collision('?b', '?p', '?b2', '?p2'),
                   AtPose('?b2', '?p2')],
              eff=Unsafe('?b', '?p')),
    ]
    initial_atoms = [
        Conf(initial_conf),
        AtConf(initial_conf),
        HandEmpty(),
        initialize(TotalCost(), 0),
    ]
    for b, p in initial_poses.items():
        initial_atoms += [Block(b), IsPose(b, p), AtPose(b, p)]
    for b, p in goal_poses.items():
        initial_atoms += [IsPose(b, p)]

    goal_literals = [AtPose(b, p) for b, p in goal_poses.items()]

    problem = Problem(initial_atoms,
                      goal_literals,
                      actions,
                      axioms,
                      streams,
                      objective=TotalCost())
    print problem

    pr = cProfile.Profile()
    pr.enable()

    plan, evaluations = dual_focused(problem,
                                     terminate_cost=INF,
                                     verbose=False,
                                     bind=True,
                                     use_context=True,
                                     temp_dir='fish/',
                                     clean=True)

    print plan
    pr.disable()
    pstats.Stats(pr).sort_stats('cumtime').print_stats(10)
Esempio n. 6
0
def main(n=5, bound='unique'):
    initial_conf = 0
    initial_poses = {'b{}'.format(i): i for i in xrange(n)}

    goal_poses = {'b1': 2}

    Block = Predicate('?b')
    Pose = Predicate('?p')
    Conf = Predicate('?q')

    Kin = Predicate('?q ?p')
    CFree = Predicate('?p1 ?p2')

    AtConf = Predicate('?q')
    AtPose = Predicate('?b ?p')
    Holding = Predicate('?b')
    HandEmpty = Predicate('')

    Safe = Predicate('?b ?p')

    rename_functions(locals())

    streams = [
        Stream(name='placement',
               inp=[],
               domain=[],
               fn=lambda: ([(p, )] for p in xrange(n, 100)),
               out='?p',
               graph=[Pose('?p')],
               bound=bound),
        FnStream(name='ik',
                 inp='?p',
                 domain=[Pose('?p')],
                 fn=lambda p: (p, ),
                 out='?q',
                 graph=[Kin('?q', '?p'), Conf('?q')],
                 bound=bound),
        TestStream(name='collision',
                   inp='?p1 ?p2',
                   domain=[Pose('?p1'), Pose('?p2')],
                   test=lambda p1, p2: p1 != p2,
                   graph=[CFree('?p1', '?p2')],
                   eager=True,
                   bound=bound),
    ]
    actions = [
        Action(name='Move',
               param='?q1 ?q2',
               pre=[Conf('?q1'), Conf('?q2'),
                    AtConf('?q1')],
               eff=[AtConf('?q2'), ~AtConf('?q1'),
                    Increase(TotalCost(), 1)]),
        Action(name='Pick',
               param='?b ?p ?q',
               pre=[
                   Block('?b'),
                   Kin('?q', '?p'),
                   AtPose('?b', '?p'),
                   HandEmpty(),
                   AtConf('?q')
               ],
               eff=[
                   Holding('?b'), ~AtPose('?b', '?p'), ~HandEmpty(),
                   Increase(TotalCost(), 1)
               ]),
    ]
    for b in initial_poses:
        actions += [
            Action(name='Place-' + b,
                   param='?p ?q',
                   pre=[Block(b),
                        Kin('?q', '?p'),
                        Holding(b),
                        AtConf('?q')] +
                   [Safe(b2, '?p') for b2 in initial_poses if b2 != b],
                   eff=[
                       AtPose(b, '?p'),
                       HandEmpty(), ~Holding(b),
                       Increase(TotalCost(), 1)
                   ])
        ]

    axioms = [
        Axiom(param='?p1 ?b2 ?p2',
              pre=[Block('?b2'),
                   CFree('?p1', '?p2'),
                   AtPose('?b2', '?p2')],
              eff=Safe('?b2', '?p1')),
    ]
    initial_atoms = [
        Conf(initial_conf),
        AtConf(initial_conf),
        HandEmpty(),
        initialize(TotalCost(), 0),
    ]
    for b, p in initial_poses.items():
        initial_atoms += [Block(b), Pose(p), AtPose(b, p)]
    for b, p in goal_poses.items():
        initial_atoms += [Pose(p)]

    goal_literals = [AtPose(b, p) for b, p in goal_poses.items()]

    problem = Problem(initial_atoms,
                      goal_literals,
                      actions,
                      axioms,
                      streams,
                      objective=TotalCost())
    print problem

    pr = cProfile.Profile()
    pr.enable()

    plan, evaluations = dual_focused(problem, terminate_cost=INF, verbose=True)

    print plan
    pr.disable()
    pstats.Stats(pr).sort_stats('cumtime').print_stats(10)
GRIPPER = '?gripper'
CUP = '?cup'
SPOON = '?spoon'
KETTLE = '?kettle'
BLOCK = '?block'
POSE = '?end_pose'
POSE2 = '?pose2'
POSE3 = '?pose3'
POSE4 = '?pose4'
GRASP = '?grasp'
CONTROL = '?control'

##################################################

# Static predicates (predicates that do not change over time)
IsGripper = Predicate([GRIPPER])
IsCup = Predicate([CUP])
IsStirrer = Predicate([KETTLE])
IsSpoon = Predicate([KETTLE])
IsBlock = Predicate([CUP])
IsPourable = Predicate([CUP])

IsPose = Predicate([CUP, POSE])
IsGrasp = Predicate([CUP, GRASP])
IsControl = Predicate([CONTROL])

CanGrasp = Predicate([GRIPPER, POSE, CUP, POSE2, GRASP, CONTROL])
BelowFaucet = Predicate([GRIPPER, POSE, CUP, GRASP])
CanPour = Predicate([GRIPPER, POSE, CUP, GRASP, KETTLE, POSE2, CONTROL])
Motion = Predicate([GRIPPER, POSE, POSE2, CONTROL])
MotionH = Predicate([GRIPPER, POSE, CUP, GRASP, POSE2, CONTROL])
Esempio n. 8
0
def ss_from_problem(robot,
                    movable=[],
                    bound='shared',
                    teleport=False,
                    movable_collisions=False,
                    grasp_name='top'):
    #assert (not are_colliding(tree, kin_cache))
    rigid = [body for body in get_bodies() if body != robot]
    fixed = [body for body in rigid if body not in movable]
    print('Robot:', robot)
    print('Movable:', movable)
    print('Fixed:', fixed)

    conf = BodyConf(robot, get_configuration(robot))
    initial_atoms = [
        HandEmpty(),
        CanMove(),
        IsConf(conf),
        AtConf(conf),
        initialize(TotalCost(), 0),
    ]
    for body in movable:
        pose = BodyPose(body, get_pose(body))
        initial_atoms += [
            IsMovable(body),
            IsPose(body, pose),
            AtPose(body, pose)
        ]
        for surface in fixed:
            initial_atoms += [Stackable(body, surface)]
            if is_placement(body, surface):
                initial_atoms += [IsSupported(pose, surface)]

    for body in fixed:
        name = get_body_name(body)
        if 'sink' in name:
            initial_atoms.append(Sink(body))
        if 'stove' in name:
            initial_atoms.append(Stove(body))

    body = movable[0]
    goal_literals = [
        AtConf(conf),
        #Holding(body),
        #On(body, fixed[0]),
        #On(body, fixed[2]),
        #Cleaned(body),
        Cooked(body),
    ]

    PlacedCollision = Predicate([T, O, P],
                                domain=[IsTraj(T), IsPose(O, P)],
                                fn=get_movable_collision_test(),
                                bound=False)

    actions = [
        Action(name='pick',
               param=[O, P, G, Q, T],
               pre=[
                   IsKin(O, P, G, Q, T),
                   HandEmpty(),
                   AtPose(O, P),
                   AtConf(Q), ~Unsafe(T)
               ],
               eff=[HasGrasp(O, G),
                    CanMove(), ~HandEmpty(), ~AtPose(O, P)]),
        Action(
            name='place',
            param=[O, P, G, Q, T],
            pre=[IsKin(O, P, G, Q, T),
                 HasGrasp(O, G),
                 AtConf(Q), ~Unsafe(T)],
            eff=[HandEmpty(),
                 CanMove(),
                 AtPose(O, P), ~HasGrasp(O, G)]),

        # Can just do move if we check holding collisions
        Action(name='move_free',
               param=[Q, Q2, T],
               pre=[
                   IsFreeMotion(Q, Q2, T),
                   HandEmpty(),
                   CanMove(),
                   AtConf(Q), ~Unsafe(T)
               ],
               eff=[AtConf(Q2), ~CanMove(), ~AtConf(Q)]),
        Action(name='move_holding',
               param=[Q, Q2, O, G, T],
               pre=[
                   IsHoldingMotion(Q, Q2, O, G, T),
                   HasGrasp(O, G),
                   CanMove(),
                   AtConf(Q), ~Unsafe(T)
               ],
               eff=[AtConf(Q2), ~CanMove(), ~AtConf(Q)]),
        Action(
            name='clean',
            param=[O, O2],  # Wirelessly communicates to clean
            pre=[Stackable(O, O2),
                 Sink(O2), ~Cooked(O),
                 On(O, O2)],
            eff=[Cleaned(O)]),
        Action(
            name='cook',
            param=[O, O2],  # Wirelessly communicates to cook
            pre=[Stackable(O, O2),
                 Stove(O2), Cleaned(O),
                 On(O, O2)],
            eff=[Cooked(O), ~Cleaned(O)]),
    ]

    axioms = [
        Axiom(param=[O, G],
              pre=[IsGrasp(O, G), HasGrasp(O, G)],
              eff=Holding(O)),
        Axiom(param=[O, P, O2],
              pre=[IsPose(O, P),
                   IsSupported(P, O2),
                   AtPose(O, P)],
              eff=On(O, O2)),
    ]
    if movable_collisions:
        axioms += [
            Axiom(param=[T, O, P],
                  pre=[IsPose(O, P),
                       PlacedCollision(T, O, P),
                       AtPose(O, P)],
                  eff=Unsafe(T)),
        ]

    streams = [
        GenStream(name='grasp',
                  inp=[O],
                  domain=[IsMovable(O)],
                  fn=get_grasp_gen(robot, grasp_name),
                  out=[G],
                  graph=[IsGrasp(O, G)],
                  bound=bound),

        # TODO: test_support
        GenStream(name='support',
                  inp=[O, O2],
                  domain=[Stackable(O, O2)],
                  fn=get_stable_gen(fixed=fixed),
                  out=[P],
                  graph=[IsPose(O, P), IsSupported(P, O2)],
                  bound=bound),
        FnStream(name='inverse_kin',
                 inp=[O, P, G],
                 domain=[IsPose(O, P), IsGrasp(O, G)],
                 fn=get_ik_fn(robot, fixed=fixed, teleport=teleport),
                 out=[Q, T],
                 graph=[IsKin(O, P, G, Q, T),
                        IsConf(Q), IsTraj(T)],
                 bound=bound),
        FnStream(name='free_motion',
                 inp=[Q, Q2],
                 domain=[IsConf(Q), IsConf(Q2)],
                 fn=get_free_motion_gen(robot, teleport=teleport),
                 out=[T],
                 graph=[IsFreeMotion(Q, Q2, T),
                        IsTraj(T)],
                 bound=bound),
        FnStream(name='holding_motion',
                 inp=[Q, Q2, O, G],
                 domain=[IsConf(Q), IsConf(Q2),
                         IsGrasp(O, G)],
                 fn=get_holding_motion_gen(robot, teleport=teleport),
                 out=[T],
                 graph=[IsHoldingMotion(Q, Q2, O, G, T),
                        IsTraj(T)],
                 bound=bound),
    ]

    return Problem(initial_atoms,
                   goal_literals,
                   actions,
                   axioms,
                   streams,
                   objective=TotalCost())
Esempio n. 9
0
from pybullet_tools.kuka_primitives import BodyPose, BodyConf, Command, get_grasp_gen, get_stable_gen, get_ik_fn, get_free_motion_gen, \
    get_holding_motion_gen, get_movable_collision_test
from pybullet_tools.utils import WorldSaver,  connect, dump_world, get_pose, set_pose, Pose, Point, set_default_camera, stable_z, \
    BLOCK_URDF, get_configuration, SINK_URDF, STOVE_URDF, load_model, wait_for_interrupt, is_placement, get_body_name, \
    disconnect, DRAKE_IIWA_URDF, get_bodies, user_input

#######################################################

O, O2 = '?o', '?o2'
P, P2 = '?p', '?p2'
G = '?g'
Q, Q2 = '?q', '?q2'
T = '?t'

IsMovable = Predicate([O])
Stackable = Predicate([O, O2])
Cleaned = Predicate([O])
Cooked = Predicate([O])
Sink = Predicate([O])
Stove = Predicate([O])

IsPose = Predicate([O, P])
IsGrasp = Predicate([O, G])
IsConf = Predicate([Q])
IsTraj = Predicate([T])

IsSupported = Predicate([P, O2])
IsKin = Predicate([O, P, G, Q, T])
IsFreeMotion = Predicate([Q, Q2, T])
IsHoldingMotion = Predicate([Q, Q2, O, G, T])
Esempio n. 10
0
def evaluate_negative_atoms(universe, evaluations, opt_plan):
    success = True
    negative_atoms = negative_axioms(universe, opt_plan)
    for atom in negative_atoms:
        if set(atom.head.domain()) <= evaluations:
            eval = atom.head.get_eval()
            evaluations.add(eval)
            success &= (atom.value == eval.value)
        else:
            success = False
    return success, negative_atoms


X = '?x'
Computed = Predicate([X], name='Computed')
Computable = Predicate([X], name='Computable')


def initialize_fluent_streams(problem):

    fluents = problem.fluents()
    new_axioms = []
    for stream in problem.streams:

        stream.fluent_domain = tuple(a for a in stream.domain
                                     if a.head.function in fluents)
        stream.domain = tuple(a for a in stream.domain
                              if a not in stream.fluent_domain)
        stream.predicates = []
        for i, o in enumerate(stream.outputs):
Esempio n. 11
0
def ss_from_problem(problem,
                    bound='shared',
                    remote=False,
                    teleport=False,
                    movable_collisions=False):
    robot = problem.robot

    #initial_bq = Pose(robot, get_pose(robot))
    initial_bq = Conf(robot, get_group_joints(robot, 'base'),
                      get_group_conf(robot, 'base'))
    initial_atoms = [
        CanMove(),
        IsBConf(initial_bq),
        AtBConf(initial_bq),
        initialize(TotalCost(), 0),
    ]
    for name in problem.arms:
        joints = get_arm_joints(robot, name)
        conf = Conf(robot, joints, get_joint_positions(robot, joints))
        initial_atoms += [
            IsArm(name),
            HandEmpty(name),
            IsAConf(name, conf),
            AtAConf(name, conf)
        ]
    for body in problem.movable:
        pose = Pose(body, get_pose(body))
        initial_atoms += [
            IsMovable(body),
            IsPose(body, pose),
            AtPose(body, pose),
            POSE(pose)
        ]
        for surface in problem.surfaces:
            initial_atoms += [Stackable(body, surface)]
            if is_placement(body, surface):
                initial_atoms += [IsSupported(pose, surface)]

    initial_atoms += map(Washer, problem.sinks)
    initial_atoms += map(Stove, problem.stoves)
    initial_atoms += [IsConnected(*pair) for pair in problem.buttons]
    initial_atoms += [IsButton(body) for body, _ in problem.buttons]

    goal_literals = []
    if problem.goal_conf is not None:
        goal_conf = Pose(robot, problem.goal_conf)
        initial_atoms += [IsBConf(goal_conf)]
        goal_literals += [AtBConf(goal_conf)]
    goal_literals += [Holding(*pair) for pair in problem.goal_holding]
    goal_literals += [On(*pair) for pair in problem.goal_on]
    goal_literals += map(Cleaned, problem.goal_cleaned)
    goal_literals += map(Cooked, problem.goal_cooked)

    #GraspedCollision = Predicate([A, G, AT], domain=[IsArm(A), POSE(G), IsArmTraj(AT)],
    #                             fn=lambda a, p, at: False, bound=False)

    PlacedCollision = Predicate([AT, P],
                                domain=[IsArmTraj(AT), POSE(P)],
                                fn=lambda at, p: False,
                                bound=False)

    actions = [
        Action(name='pick',
               param=[A, O, P, G, BQ, AT],
               pre=[
                   IsKin(A, O, P, G, BQ, AT),
                   HandEmpty(A),
                   AtPose(O, P),
                   AtBConf(BQ), ~Unsafe(AT)
               ],
               eff=[
                   HasGrasp(A, O, G),
                   CanMove(), ~HandEmpty(A), ~AtPose(O, P),
                   Increase(TotalCost(), 1)
               ]),
        Action(name='place',
               param=[A, O, P, G, BQ, AT],
               pre=[
                   IsKin(A, O, P, G, BQ, AT),
                   HasGrasp(A, O, G),
                   AtBConf(BQ), ~Unsafe(AT)
               ],
               eff=[
                   HandEmpty(A),
                   CanMove(),
                   AtPose(O, P), ~HasGrasp(A, O, G),
                   Increase(TotalCost(), 1)
               ]),
        Action(
            name='move',
            param=[BQ, BQ2, BT],
            pre=[IsMotion(BQ, BQ2, BT),
                 CanMove(),
                 AtBConf(BQ), ~Unsafe(BT)],
            eff=[
                AtBConf(BQ2), ~CanMove(), ~AtBConf(BQ),
                Increase(TotalCost(), 1)
            ]),

        # TODO: should the robot be allowed to have different carry configs or a defined one?
        #Action(name='move_arm', param=[A, BQ, BQ2],
        #       pre=[IsAConf(A, BQ), IsAConf(A, BQ),
        #            CanMove(), AtBConf(BQ)],
        #       eff=[AtAConf(BQ2), ~AtAConf(BQ),
        #            Increase(TotalCost(), 1)]),

        # Why would one want to move to the pick configuration for something anywhere but the goal?
        # Stream that generates arm motions as long as one is a shared configuration
        # Maybe I should make a base
    ]

    if remote:
        actions += [
            Action(
                name='clean',
                param=[O, O2],  # Wirelessly communicates to clean
                pre=[Stackable(O, O2),
                     Washer(O2), ~Cooked(O),
                     On(O, O2)],
                eff=[Cleaned(O)]),
            Action(
                name='cook',
                param=[O, O2],  # Wirelessly communicates to cook
                pre=[Stackable(O, O2),
                     Stove(O2),
                     Cleaned(O),
                     On(O, O2)],
                eff=[Cooked(O), ~Cleaned(O)]),
        ]
    else:
        actions += [
            Action(name='press_clean',
                   param=[O, O2, A, B, BQ, AT],
                   pre=[
                       Stackable(O, O2),
                       Washer(O2),
                       IsConnected(B, O2),
                       IsPress(A, B, BQ, AT), ~Cooked(O),
                       On(O, O2),
                       HandEmpty(A),
                       AtBConf(BQ)
                   ],
                   eff=[Cleaned(O), CanMove()]),
            Action(name='press_cook',
                   param=[O, O2, A, B, BQ, AT],
                   pre=[
                       Stackable(O, O2),
                       Stove(O2),
                       IsConnected(B, O2),
                       IsPress(A, B, BQ, AT),
                       Cleaned(O),
                       On(O, O2),
                       HandEmpty(A),
                       AtBConf(BQ)
                   ],
                   eff=[Cooked(O), ~Cleaned(O),
                        CanMove()]),
        ]

    axioms = [
        Axiom(param=[A, O, G],
              pre=[IsArm(A), IsGrasp(O, G),
                   HasGrasp(A, O, G)],
              eff=Holding(A, O)),
        Axiom(param=[O, P, O2],
              pre=[IsPose(O, P),
                   IsSupported(P, O2),
                   AtPose(O, P)],
              eff=On(O, O2)),
    ]
    if movable_collisions:
        axioms += [
            Axiom(param=[O, P, AT],
                  pre=[IsPose(O, P),
                       PlacedCollision(AT, P),
                       AtPose(O, P)],
                  eff=Unsafe(AT)),
        ]

    streams = [
        FnStream(name='motion',
                 inp=[BQ, BQ2],
                 domain=[IsBConf(BQ), IsBConf(BQ2)],
                 fn=get_motion_gen(problem, teleport=teleport),
                 out=[BT],
                 graph=[IsMotion(BQ, BQ2, BT),
                        IsBaseTraj(BT)],
                 bound=bound),
        ListStream(name='grasp',
                   inp=[O],
                   domain=[IsMovable(O)],
                   fn=get_grasp_gen(problem),
                   out=[G],
                   graph=[IsGrasp(O, G), GRASP(G)],
                   bound=bound),

        # TODO: test_support
        Stream(name='support',
               inp=[O, O2],
               domain=[Stackable(O, O2)],
               fn=get_stable_gen(problem),
               out=[P],
               graph=[IsPose(O, P), IsSupported(P, O2),
                      POSE(P)],
               bound=bound),
        GenStream(
            name='ik_ir',
            inp=[A, O, P, G],
            domain=[IsArm(A), IsPose(O, P),
                    IsGrasp(O, G)],
            fn=get_ik_ir_gen(problem, teleport=teleport),
            out=[BQ, AT],
            graph=[IsKin(A, O, P, G, BQ, AT),
                   IsBConf(BQ),
                   IsArmTraj(AT)],
            bound=bound),
        GenStream(name='press',
                  inp=[A, B],
                  domain=[IsArm(A), IsButton(B)],
                  fn=get_press_gen(problem, teleport=teleport),
                  out=[BQ, AT],
                  graph=[IsPress(A, B, BQ, AT),
                         IsBConf(BQ),
                         IsArmTraj(AT)],
                  bound=bound),
    ]

    return Problem(initial_atoms,
                   goal_literals,
                   actions,
                   axioms,
                   streams,
                   objective=TotalCost())
Esempio n. 12
0
from debug_examples.test_json import load_json_problem

A = '?a'
O = '?o'
O2 = '?o2'
B = '?b'
#S = '?s' # Surface (in case I don't want to worry about stacking for real
P = '?p'
P2 = '?p2'
G = '?g'
BQ = '?q'
BQ2 = '?q2'
AT = '?at'
BT = '?bt'

IsArm = Predicate([A])
IsMovable = Predicate([O])
Stackable = Predicate([O, O2])

POSE = Predicate([P])
GRASP = Predicate([G])
IsBConf = Predicate([BQ])
IsAConf = Predicate([A, BQ])

IsPose = Predicate([O, P])
IsSupported = Predicate([P, O2])
IsGrasp = Predicate([O, G])
IsArmTraj = Predicate([AT])
IsBaseTraj = Predicate([BT])
IsKin = Predicate([A, O, P, G, BQ, AT])
IsMotion = Predicate([BQ, BQ2, BT])
Esempio n. 13
0
def main(n=2, verbose=False):

    Item = Predicate('?b')
    Part = Predicate('?r')
    Class = Predicate('?c')

    IsMovable = Predicate('?i', domain=[Item('?i')])
    IsFixed = Predicate('?i', domain=[Item('?i')])
    IsClass = Predicate('?i ?c', domain=[Item('?i'), Class('?c')])
    IsArm = Predicate('?r', domain=[Part('?r')])
    IsStackable = Predicate('?i1 ?i2', domain=[Item('?i1'), Item('?i2')])

    HandHolding = Predicate('?r ?b', domain=[IsArm('?r'), Item('?b')])
    HandEmpty = Predicate('?r', domain=[IsArm('?r')])
    On = Predicate('?i1 ?i2', domain=[Item('?i1'), Item('?i2')])
    Nearby = Predicate('?s', domain=[IsFixed('?s')])

    Found = Predicate('?b', domain=[Item('?b')])
    Localized = Predicate('?b', domain=[Item('?b')])

    Holding = Predicate('?c', domain=[Class('?c')])

    rename_functions(locals())

    actions = [
        Action(
            name='Pick',
            param='?a ?i ?s',
            pre=[
                IsArm('?a'),
                IsStackable('?i', '?s'),
                HandEmpty('?a'),
                Nearby('?s'),
                On('?i', '?s'),
                Localized('?i')
            ],
            eff=[HandHolding('?a', '?i'), ~HandEmpty('?a'), ~On('?i', '?s')]),
        Action(name='Place',
               param='?a ?i ?s',
               pre=[
                   IsArm('?a'),
                   IsStackable('?i', '?s'),
                   Nearby('?s'),
                   HandHolding('?a', '?i'),
                   Localized('?s')
               ],
               eff=[HandEmpty('?a'),
                    On('?i', '?s'), ~HandHolding('?a', '?i')]),
        Action(name='ScanRoom',
               param='?s',
               pre=[IsFixed('?s'), ~Found('?s')],
               eff=[Found('?s')]),
        Action(name='ScanFixed',
               param='?s ?i',
               pre=[IsStackable('?i', '?s'), ~Found('?i')],
               eff=[Found('?i'),
                    On('?i', '?s'),
                    Increase(TotalCost(), 1)]),
        Action(name='Look',
               param='?i',
               pre=[Found('?i')],
               eff=[Localized('?i')]),
        Action(name='Move',
               param='?s',
               pre=[IsFixed('?s')],
               eff=[Nearby('?s')] + [~Nearby(s)
                                     for s in ['table0', 'table1']] +
               [~Localized(s) for s in ['soup0']]),
    ]
    initial_atoms = [
        initialize(TotalCost(), 0),
        HandEmpty('left'),
        HandEmpty('right'),
        Found('table0'),
        Found('table1'),
        IsClass('table0', 'table'),
        IsClass('table1', 'table'),
        IsFixed('table0'),
        IsFixed('table1'),
        IsStackable('soup0', 'table0'),
        IsStackable('soup0', 'table1'),
        IsClass('soup0', 'soup'),
        Found('soup0'),
        On('soup0', 'table0'),
        IsStackable('green0', 'table0'),
        IsStackable('green0', 'table1'),
        IsClass('green0', 'green'),
        Found('green0'),
        On('green0', 'table0'),
    ]

    axioms = [
        Axiom(param='?a ?i ?c',
              pre=[IsArm('?a'),
                   IsClass('?i', '?c'),
                   HandHolding('?a', '?i')],
              eff=Holding('?c')),
    ]

    goal_literals = [Holding('green'), Holding('soup')]

    problem = Problem(initial_atoms,
                      goal_literals,
                      actions,
                      axioms, [],
                      objective=TotalCost())

    print problem

    plan, evaluations = incremental(problem, verbose=verbose)
    print plan
Esempio n. 14
0
def main():
    initial_bq = BConf(0, 1)

    initial_poses = {
        'green': [10, 10, 30],
        'table': [10, 20, 30],
    }
    movable = {'green'}

    initial_p_from_name = {}
    class_from_name = {}
    for cl in initial_poses:
        for i, x in enumerate(initial_poses[cl]):
            name = cl + str(i)
            class_from_name[name] = cl
            initial_p_from_name[name] = Pose(name, x)
    print initial_p_from_name
    print class_from_name

    O = '?o'
    S = '?s'
    R = '?r'
    P = '?p'
    P2 = '?p2'
    G = '?g'
    Q = '?q'
    Q2 = '?q2'
    C = '?c'

    base = 'base'
    head = 'head'
    left = 'left'
    right = 'right'

    IsPose = Predicate([O, P])
    IsGrasp = Predicate([O, G])
    IsConf = Predicate([P, Q])
    IsMovable = Predicate([O])
    IsFixed = Predicate([O])

    IsKin = Predicate([R, O, P, G, Q])

    IsSupported = Predicate([P, P2])

    IsArm = Predicate([R])
    IsClass = Predicate([O, C])

    AtPose = Predicate([O, P])
    AtConf = Predicate([R, Q])
    HasGrasp = Predicate([R, O, G])
    HandEmpty = Predicate([R])

    Holding = Predicate([O])
    On = Predicate([O, S])

    base_constant_cost = 1

    def get_circle(value):
        if isinstance(value, BConf):
            return value.x, 0
        if isinstance(value, Pose):
            return value.x, 0
        if isinstance(value, InputOutputSet):
            if value.stream.name == 'IK':
                _, _, p, _ = value.inputs
                x, r = get_circle(p)
                return x, r + 0
            if value.stream.name == 'placement':
                _, _, p = value.inputs
                x, r = get_circle(p)
                return x, r + 0
        raise ValueError(value)

    def distance_bound_fn(q1, q2):
        x1, r1 = get_circle(q1)
        x2, r2 = get_circle(q2)
        return max(abs(x2 - x1) - (r1 + r2), 0) + base_constant_cost

    Distance = Function([Q, Q2],
                        domain=[IsConf(base, Q),
                                IsConf(base, Q2)],
                        fn=lambda q1, q2: abs(q2.x - q1.x) + abs(q2.y - q1.y) +
                        base_constant_cost,
                        bound=distance_bound_fn)

    rename_functions(locals())

    bound = 'shared'
    streams = [
        FnStream(name='grasp',
                 inp=[O],
                 domain=[IsMovable(O)],
                 fn=lambda o: (Grasp(o), ),
                 out=[G],
                 graph=[IsGrasp(O, G)],
                 bound=bound),
        ListStream(name='IK',
                   inp=[R, O, P, G],
                   domain=[IsArm(R), IsPose(O, P),
                           IsGrasp(O, G)],
                   fn=lambda r, o, p, g: [(BConf(p.x, +1), )],
                   out=[Q],
                   graph=[IsKin(R, O, P, G, Q),
                          IsConf(base, Q)],
                   bound=bound),
        FnStream(name='placement',
                 inp=[O, S, P],
                 domain=[IsMovable(O), IsFixed(S),
                         IsPose(S, P)],
                 fn=lambda o, s, p: (Pose(o, p.x), ),
                 out=[P2],
                 graph=[IsPose(O, P2), IsSupported(P2, P)],
                 bound=bound),
    ]

    actions = [
        Action(name='pick',
               param=[R, O, P, G, Q],
               pre=[
                   IsKin(R, O, P, G, Q),
                   HandEmpty(R),
                   AtPose(O, P),
                   AtConf(base, Q)
               ],
               eff=[HasGrasp(R, O, G), ~HandEmpty(R)]),
        Action(name='place',
               param=[R, O, P, G, Q],
               pre=[IsKin(R, O, P, G, Q),
                    HasGrasp(R, O, G),
                    AtConf(base, Q)],
               eff=[HandEmpty(R),
                    AtPose(O, P), ~HasGrasp(R, O, G)]),
        Action(
            name='move_base',
            param=[Q, Q2],
            pre=[IsConf(base, Q),
                 IsConf(base, Q2),
                 AtConf(base, Q)],
            eff=[AtConf(base, Q2), ~AtConf(base, Q),
                 Increase(TotalCost(), 1)]),
        Action(name='move_head',
               param=[Q, Q2],
               pre=[IsConf(head, Q),
                    IsConf(head, Q2),
                    AtConf(head, Q)],
               eff=[AtConf(head, Q2), ~AtConf(head, Q)]),
    ]
    axioms = [
        Axiom(param=[R, O, G],
              pre=[IsArm(R), IsGrasp(O, G),
                   HasGrasp(R, O, G)],
              eff=Holding(O)),
        Axiom(param=[O, P, S, P2],
              pre=[
                  IsPose(O, P),
                  IsPose(S, P2),
                  IsSupported(P, P2),
                  AtPose(O, P),
                  AtPose(S, P2)
              ],
              eff=On(O, S)),
    ]

    initial_atoms = [
        IsArm(left),
        HandEmpty(left),
        HandEmpty(right),
        IsConf(base, initial_bq),
        AtConf(base, initial_bq),
        initialize(TotalCost(), 0),
    ]

    for n, p in initial_p_from_name.items():
        initial_atoms += [IsPose(n, p), AtPose(n, p)]
        if class_from_name[n] not in movable:
            continue
        for n2, p2 in initial_p_from_name.items():
            if class_from_name[n2] in movable:
                continue
            if p.x == p2.x:
                initial_atoms.append(IsSupported(p, p2))
    for n, cl in class_from_name.items():

        if cl in movable:
            initial_atoms.append(IsMovable(n))
        else:
            initial_atoms.append(IsFixed(n))

    goal_literals = [On('green0', 'table1'), On('green1', 'table1')]

    problem = Problem(initial_atoms,
                      goal_literals,
                      actions,
                      axioms,
                      streams,
                      objective=TotalCost())

    print problem

    pr = cProfile.Profile()
    pr.enable()

    plan, _ = dual_focused(problem)
    pr.disable()
    pstats.Stats(pr).sort_stats('tottime').print_stats(10)

    if plan is None:
        print plan
        return
    print 'Length', len(plan)
    for i, act in enumerate(plan):
        print i, act