Esempio n. 1
0
def testing():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        ssd_model = ssd300.SSD300(sess,
                                  False,
                                  class_size=class_size,
                                  graph_config=graph_config)
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(var_list=tf.trainable_variables())
        if os.path.exists('./session_params/session.ckpt.index'):
            saver.restore(sess, './session_params/session.ckpt')
            image, actual, file_list = next(dataset.next_test())
            pred_class, pred_class_val, pred_location = ssd_model.run(
                image, None, file_list)
            print('file_list:' + str(file_list))
            #
            for index, act in zip(range(len(image)), actual):
                for a in act:
                    print('【img-' + str(index) + ' actual】:' + str(a))
                print('pred_class:' + str(pred_class[index]))
                print('pred_class_val:' + str(pred_class_val[index]))
                print('pred_location:' + str(pred_location[index]))

        else:
            print('No Data Exists!')
        sess.close()
Esempio n. 2
0
def training():
    batch_size = FLAGS.batch_size
    running_count = 0

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        ssd_model = ssd300.SSD300(sess, True)
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(var_list=tf.trainable_variables())
        if FLAGS.finetune:
            print('Finetune from %s' % FLAGS.finetune)
            ckpt = tf.train.get_checkpoint_state(FLAGS.finetune)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:
                raise ValueError('Failed to load model.')
            print('-------------------------')

        print('\nStart Training')
        min_loss_location = 100000.
        min_loss_class = 100000.
        while ((min_loss_location + min_loss_class) > 0.001
               and running_count < FLAGS.max_steps):
            running_count += 1

            train_data, actual_data, _ = get_traindata(batch_size)
            if len(train_data) > 0:
                loss_all, loss_class, loss_location, pred_class, pred_location = ssd_model.run(
                    train_data, actual_data)
                l = np.sum(loss_location)
                c = np.sum(loss_class)
                if min_loss_location > l:
                    min_loss_location = l
                if min_loss_class > c:
                    min_loss_class = c
                if running_count % FLAGS.log_frequency == 0:
                    #                    print('Step: %d | Loss All: %.4f(min) %.4f | Location: %.4f | Class: %.4f | pred_class: %.4f(all) %.4f(max) %.4f(min) | pred_location: %.4f(all) %.4f(max) %.4f(min)'
                    #                          %(running_count, min_loss_location + min_loss_class, loss_all, np.sum(loss_location), np.sum(loss_class), np.sum(pred_class), np.amax(pred_class), np.min(pred_class), np.sum(pred_location), np.amax(pred_location), np.min(pred_location)))
                    print(
                        'Step: %d | Loss All: %.4f(min) %.4f | Location: %.4f | Class: %.4f'
                        %
                        (running_count, min_loss_location + min_loss_class,
                         loss_all, np.sum(loss_location), np.sum(loss_class)))

                # 定期保存ckpt
                if running_count % 1000 == 0:
                    saver.save(sess, FLAGS.model_dir + 'session.ckpt')
                    print('session.ckpt has been saved.')
                    gc.collect()
            else:
                print('No Data Exists!')
                break

        saver.save(sess, FLAGS.model_dir + 'session.ckpt')
        sess.close()
        gc.collect()

    print('End Training')
Esempio n. 3
0
def training():
    batch_size = 15
    running_count = 0

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        ssd_model = ssd300.SSD300(sess, True)
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(var_list=tf.trainable_variables())
        if os.path.exists('./session_params/session.ckpt.index'):
            print('\nStart Restore')
            saver.restore(sess, './session_params/session.ckpt')
            print('\nEnd Restore')

        print('\nStart Training')
        min_loss_location = 100000.
        min_loss_class = 100000.
        while ((min_loss_location + min_loss_class) > 0.001
               and running_count < 100000):
            running_count += 1

            train_data, actual_data, _ = get_traindata_voc2007(batch_size)
            if len(train_data) > 0:
                loss_all, loss_class, loss_location, pred_class, pred_location = ssd_model.run(
                    train_data, actual_data)
                l = np.sum(loss_location)
                c = np.sum(loss_class)
                if min_loss_location > l:
                    min_loss_location = l
                if min_loss_class > c:
                    min_loss_class = c

                print('Running:【' + str(running_count) + '】|Loss All:【' +
                      str(min_loss_location + min_loss_class) + '|' +
                      str(loss_all) + '】|Location:【' +
                      str(np.sum(loss_location)) + '】|Class:【' +
                      str(np.sum(loss_class)) + '】|pred_class:【' +
                      str(np.sum(pred_class)) + '|' +
                      str(np.amax(pred_class)) + '|' +
                      str(np.min(pred_class)) + '】|pred_location:【' +
                      str(np.sum(pred_location)) + '|' +
                      str(np.amax(pred_location)) + '|' +
                      str(np.min(pred_location)) + '】')

                # 定期保存ckpt
                if running_count % 100 == 0:
                    saver.save(sess, './session_params/session.ckpt')
                    print('session.ckpt has been saved.')
                    gc.collect()
            else:
                print('No Data Exists!')
                break

        saver.save(sess, './session_params/session.ckpt')
        sess.close()
        gc.collect()

    print('End Training')
Esempio n. 4
0
def testing():
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        ssd_model = ssd300.SSD300(sess, False)
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(var_list=tf.trainable_variables())
        if os.path.exists(FLAGS.model_dir + 'session.ckpt.index'):
            saver.restore(sess, FLAGS.model_dir + 'session.ckpt')
            img_path, image_data, actual, file_list = get_traindata(1, False)
            pred_class, pred_class_val, pred_location = ssd_model.run(
                image_data, None)
            print('file_list:' + str(file_list))
            image = cv2.imread(img_path)
            height = image.shape[0]
            width = image.shape[1]
            for index, act in zip(range(len(image_data)), actual):
                for a in act:
                    print('【img-' + str(index) + ' actual】:' + str(a))
                print('pred_class:' + str(pred_class[index]))
                print('pred_class_val:' + str(pred_class_val[index]))
                print('pred_location:' + str(pred_location[index]))
                for i in range(len(pred_location[index])):
                    w = int(pred_location[index][i].tolist()[2] * width)
                    h = int(pred_location[index][i].tolist()[3] * height)
                    x = max(
                        0,
                        int(pred_location[index][i].tolist()[0] * width -
                            w / 2))
                    y = max(
                        0,
                        int(pred_location[index][i].tolist()[1] * height -
                            h / 2))
                    cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0),
                                  2)
                    cv2.putText(image, lable_arr[pred_class[index][i]],
                                (x + 3, y + 10), cv2.FONT_HERSHEY_SIMPLEX, .5,
                                (0, 0, 255), 2)
        else:
            print('No Data Exists!')
        sess.close()

    cv2.imshow("image", image)
    cv2.waitKey()
    cv2.destroyAllWindows()