mode='test') genVal = DataGenerator(imagesMeta=data.valGTMeta, cfg=cfg, data_type='val', do_meta=True, mode='test') # genTest = DataGenerator(imagesMeta = data.testGTMeta, cfg=cfg, data_type='test', do_meta=True) Models = methods.AllModels(cfg, mode='test', do_rpn=False, do_det=True, do_hoi=False) Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='test') # Val data evalVal = det_test.saveEvalData(genVal, Stages, cfg, obj_mapping) det_test.saveEvalResults(genVal, cfg) # Test data #evalTest = det_test.saveEvalData(genTest, Stages, cfg, obj_mapping) #det_test.saveEvalResults(evalTest, genTest, cfg) # Train data #evalTrain = det_test.saveEvalData(genTrain, Stages, cfg, obj_mapping) #det_test.saveEvalResults(evalTrain, genTrain, cfg)
data = extract_data.object_data(False) # config cfg = data.cfg #cfg.do_fast_hoi = True obj_mapping = data.class_mapping hoi_mapping = data.hoi_labels # data genTrain = DataGenerator(imagesMeta=data.trainGTMeta, cfg=cfg, data_type='train', do_meta=True) #genTest = DataGenerator(imagesMeta = data.valGTMeta, cfg=cfg, data_type='test', do_meta=True, mode='test', approach='new') Stages = stages.AllStages(cfg, None, obj_mapping, hoi_mapping, mode='test') #imageID = 'HICO_test2015_00005579' #imageMeta = genTest.imagesMeta[imageID] #X, y, imageDims = Stages.stagezero(imageMeta, genTest.data_type) #imageInputs = utils.load_obj(cfg.my_input_path + 'testnewest/' + imageID) #Y_tmp = filters_hoi.loadData(imageInputs, imageDims, cfg) #[hbboxes, obboxes, target_labels, all_val_map] = Y_tmp #hbboxes, obboxes, target_labels, val_map = filters_hoi.reduceTargets(Y_tmp, cfg) #patterns = filters_hoi.createInteractionPatterns(hbboxes, obboxes, cfg) #hcrops, ocrops = filters_hoi.convertBB2Crop(X, hbboxes, obboxes, imageDims) #Models = methods.AllModels(cfg, mode='test', do_rpn=True, do_det=True, do_hoi=False) #cfg.det_nms_overlap_thresh = 0.5 #Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='train') # ##STAGE 0
genVal = DataGenerator(imagesMeta=data.valGTMeta, cfg=cfg, data_type='test', do_meta=True, mode='test') # genTest = DataGenerator(imagesMeta = data.valGTMeta, cfg=cfg, data_type='test', do_meta=True, mode='test') #if False: Models = methods.AllModels(cfg, mode='test', do_rpn=True, do_det=True, do_hoi=True) Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='test', return_times=True) generator = genVal genIterator = generator.begin() nb_iterations = 1 all_times = np.zeros((nb_iterations, 5)) for i in range(nb_iterations): X, y, imageMeta, imageDims, times = next(genIterator) # imageID = 'Play_Saxophone_007' # imageMeta = generator.imagesMeta[imageID] # X, y, imageDims = Stages.stagezero(imageMeta, generator.data_type)
data = extract_data.object_data() cfg = data.cfg obj_mapping = data.class_mapping hoi_mapping = data.hoi_labels # Create batch generators genTrain = DataGenerator(imagesMeta = data.trainGTMeta, cfg=cfg, data_type='train', do_meta=True) genTest = DataGenerator(imagesMeta = data.valGTMeta, cfg=cfg, data_type='test', do_meta=True) Models = methods.AllModels(cfg, mode='test', do_rpn=True, do_det=True, do_hoi=False) sys.stdout.flush() if True: cfg.det_nms_overlap_thresh = 0.5 Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='train') imageInputs, imageID, bboxes = hoi_test.saveInputData(genTest, Stages, cfg) cfg.det_nms_overlap_thresh = 0.9 Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='train') imageInputs, imageID, bboxes = hoi_test.saveInputData(genTrain, Stages, cfg) # cfg.det_nms_overlap_thresh = 0.5 # Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='train') # imageInputs, imageID, bboxes = hoi_test.saveInputData(genTrain, Stages, cfg, do_train_eval=True) if False: # imageID = 'HICO_train2015_00025124' imageInputs = utils.load_obj(cfg.my_output_path + imageID) # keys = list(inputMeta.keys())