Esempio n. 1
0
def test_fasttext_txt():
    """
    Test searching for fasttext and txt files
    """
    with tempfile.TemporaryDirectory(dir=f'{TEST_WORKING_DIR}/out') as temp_dir:
        # make a fake directory for English word vectors
        fasttext_dir = os.path.join(temp_dir, 'fasttext', 'English')
        os.makedirs(fasttext_dir)

        # make a fake English word vector file
        fake_file = os.path.join(fasttext_dir, 'en.vectors.txt')
        fout = open(fake_file, 'w')
        fout.close()

        # get_wordvec_file should now find this fake file
        filename = utils.get_wordvec_file(wordvec_dir=temp_dir, shorthand='en_foo')
        assert filename == fake_file
Esempio n. 2
0
def load_pretrain(args):
    pretrain = None
    if args['pretrain']:
        if args['wordvec_pretrain_file']:
            pretrain_file = args['wordvec_pretrain_file']
        else:
            pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'],
                                                       args['shorthand'])
        if os.path.exists(pretrain_file):
            vec_file = None
        else:
            vec_file = args['wordvec_file'] if args[
                'wordvec_file'] else utils.get_wordvec_file(
                    args['wordvec_dir'], args['shorthand'])
        pretrain = Pretrain(pretrain_file, vec_file,
                            args['pretrain_max_vocab'])
    return pretrain
Esempio n. 3
0
def load_pretrain(args):
    if args.wordvec_pretrain_file:
        pretrain_file = args.wordvec_pretrain_file
    elif args.wordvec_type:
        pretrain_file = '{}/{}.{}.pretrain.pt'.format(
            args.save_dir, args.shorthand, args.wordvec_type.name.lower())
    else:
        raise Exception(
            "TODO: need to get the wv type back from get_wordvec_file")

    logger.info("Looking for pretrained vectors in {}".format(pretrain_file))
    if os.path.exists(pretrain_file):
        vec_file = None
    elif args.wordvec_raw_file:
        vec_file = args.wordvec_raw_file
        logger.info("Pretrain not found.  Looking in {}".format(vec_file))
    else:
        vec_file = utils.get_wordvec_file(args.wordvec_dir, args.shorthand,
                                          args.wordvec_type.name.lower())
        logger.info("Pretrain not found.  Looking in {}".format(vec_file))
    pretrain = Pretrain(pretrain_file, vec_file, args.pretrain_max_vocab)
    logger.info("Embedding shape: %s" % str(pretrain.emb.shape))
    return pretrain
Esempio n. 4
0
def train(args):
    utils.ensure_dir(args['save_dir'])
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_nertagger.pt'.format(args['save_dir'], args['shorthand'])

    # load pretrained vectors
    if len(args['wordvec_file']) == 0:
        vec_file = utils.get_wordvec_file(args['wordvec_dir'],
                                          args['shorthand'])
    else:
        vec_file = args['wordvec_file']
    # do not save pretrained embeddings individually
    pretrain = Pretrain(None,
                        vec_file,
                        args['pretrain_max_vocab'],
                        save_to_file=False)

    if args['charlm']:
        if args['charlm_shorthand'] is None:
            logger.info(
                "CharLM Shorthand is required for loading pretrained CharLM model..."
            )
            sys.exit(0)
        logger.info('Use pretrained contextualized char embedding')
        args['charlm_forward_file'] = '{}/{}_forward_charlm.pt'.format(
            args['charlm_save_dir'], args['charlm_shorthand'])
        args['charlm_backward_file'] = '{}/{}_backward_charlm.pt'.format(
            args['charlm_save_dir'], args['charlm_shorthand'])

    # load data
    logger.info("Loading data with batch size {}...".format(
        args['batch_size']))
    train_doc = Document(json.load(open(args['train_file'])))
    train_batch = DataLoader(train_doc,
                             args['batch_size'],
                             args,
                             pretrain,
                             evaluation=False)
    vocab = train_batch.vocab
    dev_doc = Document(json.load(open(args['eval_file'])))
    dev_batch = DataLoader(dev_doc,
                           args['batch_size'],
                           args,
                           pretrain,
                           vocab=vocab,
                           evaluation=True)
    dev_gold_tags = dev_batch.tags

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        logger.info("Skip training because no data available...")
        sys.exit(0)

    logger.info("Training tagger...")
    trainer = Trainer(args=args,
                      vocab=vocab,
                      pretrain=pretrain,
                      use_cuda=args['cuda'])
    logger.info(trainer.model)

    global_step = 0
    max_steps = args['max_steps']
    dev_score_history = []
    best_dev_preds = []
    current_lr = trainer.optimizer.param_groups[0]['lr']
    global_start_time = time.time()
    format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

    # LR scheduling
    if args['lr_decay'] > 0:
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(trainer.optimizer, mode='max', factor=args['lr_decay'], \
            patience=args['patience'], verbose=True, min_lr=args['min_lr'])
    else:
        scheduler = None

    # start training
    train_loss = 0
    while True:
        should_stop = False
        for i, batch in enumerate(train_batch):
            start_time = time.time()
            global_step += 1
            loss = trainer.update(batch, eval=False)  # update step
            train_loss += loss
            if global_step % args['log_step'] == 0:
                duration = time.time() - start_time
                logger.info(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\
                        max_steps, loss, duration, current_lr))

            if global_step % args['eval_interval'] == 0:
                # eval on dev
                logger.info("Evaluating on dev set...")
                dev_preds = []
                for batch in dev_batch:
                    preds = trainer.predict(batch)
                    dev_preds += preds
                _, _, dev_score = scorer.score_by_entity(
                    dev_preds, dev_gold_tags)

                train_loss = train_loss / args[
                    'eval_interval']  # avg loss per batch
                logger.info(
                    "step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(
                        global_step, train_loss, dev_score))
                train_loss = 0

                # save best model
                if len(dev_score_history
                       ) == 0 or dev_score > max(dev_score_history):
                    trainer.save(model_file)
                    logger.info("New best model saved.")
                    best_dev_preds = dev_preds

                dev_score_history += [dev_score]
                logger.info("")

                # lr schedule
                if scheduler is not None:
                    scheduler.step(dev_score)

            # check stopping
            current_lr = trainer.optimizer.param_groups[0]['lr']
            if global_step >= args['max_steps'] or current_lr <= args['min_lr']:
                should_stop = True
                break

        if should_stop:
            break

        train_batch.reshuffle()

    logger.info("Training ended with {} steps.".format(global_step))

    best_f, best_eval = max(dev_score_history) * 100, np.argmax(
        dev_score_history) + 1
    logger.info("Best dev F1 = {:.2f}, at iteration = {}".format(
        best_f, best_eval * args['eval_interval']))
Esempio n. 5
0
def train(args):
    utils.ensure_dir(args['save_dir'])
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand'])

    # load pretrained vectors if needed
    pretrain = None
    if args['pretrain']:
        vec_file = args['wordvec_file'] if args['wordvec_file'] else utils.get_wordvec_file(args['wordvec_dir'], args['shorthand'])
        pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand'])
        pretrain = Pretrain(pretrain_file, vec_file, args['pretrain_max_vocab'])

    # load data
    print("Loading data with batch size {}...".format(args['batch_size']))
    train_doc = Document(CoNLL.conll2dict(input_file=args['train_file']))
    train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, evaluation=False)
    vocab = train_batch.vocab
    dev_doc = Document(CoNLL.conll2dict(input_file=args['eval_file']))
    dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True)

    # pred and gold path
    system_pred_file = args['output_file']
    gold_file = args['gold_file']

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        print("Skip training because no data available...")
        sys.exit(0)

    print("Training parser...")
    trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda'])

    global_step = 0
    max_steps = args['max_steps']
    dev_score_history = []
    best_dev_preds = []
    current_lr = args['lr']
    global_start_time = time.time()
    format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

    using_amsgrad = False
    last_best_step = 0
    # start training
    train_loss = 0
    while True:
        do_break = False
        for i, batch in enumerate(train_batch):
            start_time = time.time()
            global_step += 1
            loss = trainer.update(batch, eval=False) # update step
            train_loss += loss
            if global_step % args['log_step'] == 0:
                duration = time.time() - start_time
                print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\
                        max_steps, loss, duration, current_lr))

            if global_step % args['eval_interval'] == 0:
                # eval on dev
                print("Evaluating on dev set...")
                dev_preds = []
                for batch in dev_batch:
                    preds = trainer.predict(batch)
                    dev_preds += preds
                dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx)

                dev_batch.doc.set([HEAD, DEPREL], [y for x in dev_preds for y in x])
                CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file)
                _, _, dev_score = scorer.score(system_pred_file, gold_file)

                train_loss = train_loss / args['eval_interval'] # avg loss per batch
                print("step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(global_step, train_loss, dev_score))
                train_loss = 0

                # save best model
                if len(dev_score_history) == 0 or dev_score > max(dev_score_history):
                    last_best_step = global_step
                    trainer.save(model_file)
                    print("new best model saved.")
                    best_dev_preds = dev_preds

                dev_score_history += [dev_score]
                print("")

            if global_step - last_best_step >= args['max_steps_before_stop']:
                if not using_amsgrad:
                    print("Switching to AMSGrad")
                    last_best_step = global_step
                    using_amsgrad = True
                    trainer.optimizer = optim.Adam(trainer.model.parameters(), amsgrad=True, lr=args['lr'], betas=(.9, args['beta2']), eps=1e-6)
                else:
                    do_break = True
                    break

            if global_step >= args['max_steps']:
                do_break = True
                break

        if do_break: break

        train_batch.reshuffle()

    print("Training ended with {} steps.".format(global_step))

    best_f, best_eval = max(dev_score_history)*100, np.argmax(dev_score_history)+1
    print("Best dev F1 = {:.2f}, at iteration = {}".format(best_f, best_eval * args['eval_interval']))
Esempio n. 6
0
def train(args):
    utils.ensure_dir(args['save_dir'])
    model_file = os.path.join(args['save_dir'], args['save_name']) if args['save_name'] is not None \
        else '{}/{}_nertagger.pt'.format(args['save_dir'], args['shorthand'])

    pretrain = None
    vocab = None
    trainer = None

    if args['finetune'] and args['finetune_load_name']:
        logger.warning('Finetune is ON. Using model from "{}"'.format(args['finetune_load_name']))
        _, trainer, vocab = load_model(args, args['finetune_load_name'])
    elif args['finetune'] and os.path.exists(model_file):
        logger.warning('Finetune is ON. Using model from "{}"'.format(model_file))
        _, trainer, vocab = load_model(args, model_file)
    else:
        if args['finetune']:
            raise FileNotFoundError('Finetune is set to true but model file is not found: {}'.format(model_file))

        # load pretrained vectors
        if args['wordvec_pretrain_file']:
            pretrain_file = args['wordvec_pretrain_file']
            pretrain = Pretrain(pretrain_file, None, args['pretrain_max_vocab'], save_to_file=False)
        else:
            if len(args['wordvec_file']) == 0:
                vec_file = utils.get_wordvec_file(args['wordvec_dir'], args['shorthand'])
            else:
                vec_file = args['wordvec_file']
            # do not save pretrained embeddings individually
            pretrain = Pretrain(None, vec_file, args['pretrain_max_vocab'], save_to_file=False)

        if pretrain is not None:
            word_emb_dim = pretrain.emb.shape[1]
            if args['word_emb_dim'] and args['word_emb_dim'] != word_emb_dim:
                logger.warning("Embedding file has a dimension of {}.  Model will be built with that size instead of {}".format(word_emb_dim, args['word_emb_dim']))
            args['word_emb_dim'] = word_emb_dim

        if args['charlm']:
            if args['charlm_shorthand'] is None:
                raise ValueError("CharLM Shorthand is required for loading pretrained CharLM model...")
            logger.info('Using pretrained contextualized char embedding')
            if not args['charlm_forward_file']:
                args['charlm_forward_file'] = '{}/{}_forward_charlm.pt'.format(args['charlm_save_dir'], args['charlm_shorthand'])
            if not args['charlm_backward_file']:
                args['charlm_backward_file'] = '{}/{}_backward_charlm.pt'.format(args['charlm_save_dir'], args['charlm_shorthand'])

    # load data
    logger.info("Loading data with batch size {}...".format(args['batch_size']))
    train_doc = Document(json.load(open(args['train_file'])))
    train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=False)
    vocab = train_batch.vocab
    dev_doc = Document(json.load(open(args['eval_file'])))
    dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True)
    dev_gold_tags = dev_batch.tags

    if args['finetune']:
        utils.warn_missing_tags([i for i in trainer.vocab['tag']], train_batch.tags, "training set")
    utils.warn_missing_tags(train_batch.tags, dev_batch.tags, "dev set")

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        logger.info("Skip training because no data available...")
        sys.exit(0)

    logger.info("Training tagger...")
    if trainer is None: # init if model was not loaded previously from file
        trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda'],
                          train_classifier_only=args['train_classifier_only'])
    logger.info(trainer.model)

    global_step = 0
    max_steps = args['max_steps']
    dev_score_history = []
    best_dev_preds = []
    current_lr = trainer.optimizer.param_groups[0]['lr']
    global_start_time = time.time()
    format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

    # LR scheduling
    if args['lr_decay'] > 0:
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(trainer.optimizer, mode='max', factor=args['lr_decay'], \
            patience=args['patience'], verbose=True, min_lr=args['min_lr'])
    else:
        scheduler = None

    # start training
    train_loss = 0
    while True:
        should_stop = False
        for i, batch in enumerate(train_batch):
            start_time = time.time()
            global_step += 1
            loss = trainer.update(batch, eval=False) # update step
            train_loss += loss
            if global_step % args['log_step'] == 0:
                duration = time.time() - start_time
                logger.info(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\
                        max_steps, loss, duration, current_lr))

            if global_step % args['eval_interval'] == 0:
                # eval on dev
                logger.info("Evaluating on dev set...")
                dev_preds = []
                for batch in dev_batch:
                    preds = trainer.predict(batch)
                    dev_preds += preds
                _, _, dev_score = scorer.score_by_entity(dev_preds, dev_gold_tags)

                train_loss = train_loss / args['eval_interval'] # avg loss per batch
                logger.info("step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(global_step, train_loss, dev_score))
                train_loss = 0

                # save best model
                if len(dev_score_history) == 0 or dev_score > max(dev_score_history):
                    trainer.save(model_file)
                    logger.info("New best model saved.")
                    best_dev_preds = dev_preds

                dev_score_history += [dev_score]
                logger.info("")

                # lr schedule
                if scheduler is not None:
                    scheduler.step(dev_score)
            
            # check stopping
            current_lr = trainer.optimizer.param_groups[0]['lr']
            if global_step >= args['max_steps'] or current_lr <= args['min_lr']:
                should_stop = True
                break

        if should_stop:
            break

        train_batch.reshuffle()

    logger.info("Training ended with {} steps.".format(global_step))

    if len(dev_score_history) > 0:
        best_f, best_eval = max(dev_score_history)*100, np.argmax(dev_score_history)+1
        logger.info("Best dev F1 = {:.2f}, at iteration = {}".format(best_f, best_eval * args['eval_interval']))