def create_bining_strategy_test(function_name): arg_dict = { 'test': DEFAULT_TEST, 'train': DEFAULT_TRAIN, 'structure': DEFAULT_STRUCTURE, 'tolorance': DEFAULT_TOLORANCE, 'k': DEFAULT_K, 'number_of_bins': DEFAULT_NUMBER_OF_BINS, 'bin_type': DEFAULT_BIN_TYPE, 'missing_values': DEFAULT_MISSING_VALUES, '8020': DEFAULT_8020 } resuluts = [] for strategy in ['equal_width', 'equal_frequency', 'entropy']: result = get_result(function_name, **{ **arg_dict, **{ 'bin_type': strategy } }) result_tupple = (function_name, result['score'], result['TP'], result['TN'], result['FP'], result['FN'], strategy) resuluts.append(result_tupple) columns = ('function', 'score', 'TP', 'TN', 'FP', 'FN', 'strategy') return matrix_to_df(columns, resuluts)
def create_nans_test(function_name): arg_dict = { 'test': DEFAULT_TEST, 'train': DEFAULT_TRAIN, 'structure': DEFAULT_STRUCTURE, 'tolorance': DEFAULT_TOLORANCE, 'k': DEFAULT_K, 'number_of_bins': DEFAULT_NUMBER_OF_BINS, 'bin_type': DEFAULT_BIN_TYPE, 'missing_values': DEFAULT_MISSING_VALUES, '8020': DEFAULT_8020 } resuluts = [] for s in ('remove_nans', 'replace_nans'): result = get_result(function_name, **{ **arg_dict, **{ 'missing_values': s } }) result_tupple = (function_name, result['score'], result['TP'], result['TN'], result['FP'], result['FN'], s) resuluts.append(result_tupple) columns = ('function', 'score', 'TP', 'TN', 'FP', 'FN', 'dealing with nans strategy') return matrix_to_df(columns, resuluts)
def create_bins_number_test(function_name, bins_array, strategy): arg_dict = { 'test': DEFAULT_TEST, 'train': DEFAULT_TRAIN, 'structure': DEFAULT_STRUCTURE, 'tolorance': DEFAULT_TOLORANCE, 'k': DEFAULT_K, 'number_of_bins': DEFAULT_NUMBER_OF_BINS, 'bin_type': strategy, 'missing_values': DEFAULT_MISSING_VALUES, '8020': DEFAULT_8020 } resuluts = [] for b in bins_array: print(b) result = get_result(function_name, **{ **arg_dict, **{ 'number_of_bins': b } }) result_tupple = (function_name, result['score'], result['TP'], result['TN'], result['FP'], result['FN'], b, strategy) resuluts.append(result_tupple) columns = ('function', 'score', 'TP', 'TN', 'FP', 'FN', 'number of bins', 'strategy') return matrix_to_df(columns, resuluts)
def update_output(**kwargs): setStatus('Working...') function_name = kwargs['choosen_function_name'] ### sending kwargs to start module ### vvvvvvvvvvvv result = get_result(function_name, **kwargs) ### ^^^^^^^^^^^^^ setScore(result['score']) output_components['TP_box'].config(text=result['TP']) output_components['TN_box'].config(text=result['TN']) output_components['FP_box'].config(text=result['FP']) output_components['FN_box'].config(text=result['FN']) setStatus('Done')
def create_k_test(function_name, k_array): arg_dict = { 'test': DEFAULT_TEST, 'train': DEFAULT_TRAIN, 'structure': DEFAULT_STRUCTURE, 'tolorance': DEFAULT_TOLORANCE, 'k': DEFAULT_K, 'number_of_bins': DEFAULT_NUMBER_OF_BINS, 'bin_type': DEFAULT_BIN_TYPE, 'missing_values': DEFAULT_MISSING_VALUES, '8020': DEFAULT_8020 } resuluts = [] for k in k_array: result = get_result(function_name, **{**arg_dict, **{'k': k}}) result_tupple = (result['score'], result['TP'], result['TN'], result['FP'], result['FN'], k) resuluts.append(result_tupple) columns = ('score', 'TP', 'TN', 'FP', 'FN', 'k') return matrix_to_df(columns, resuluts)
# function to open structure file def load_structure(): returnList = [] filename = 'Structure.txt' try: tmp = open(filename, "r") for line in tmp: returnList.append(line) tmp.close() except FileNotFoundError as e: print("Error", "file was not found!!") return returnList # the settings for the single test kwargs = { 'test': pd.read_csv('test.csv'), 'train': pd.read_csv('train.csv'), 'structure': load_structure(), 'number_of_bins': 14, 'k': 5, 'tolorance': 5, 'bin_type': 'equal_frequency', 'missing_values': 'remove_nans', '8020': 'yes', } # test run example: print(get_result('id3', **kwargs))