Esempio n. 1
0
	def printStatsPredators(self,pop,gen):
		fits = [ind.fitness.values[0] for ind in pop]
		mean = sum(fits) / len(pop)
		stats.add("predator_fitness.avg",mean)
		stats.add("predator_fitness.min",min(fits))
		stats.add("predator_fitness.max",max(fits))
		return ("(%3i): Max: %6.2f, Avg: %6.2f, Min: %5.2f" % (gen, max(fits), mean, min(fits)))
Esempio n. 2
0
 def printStatsPredators(self, pop, gen):
     fits = [ind.fitness.values[0] for ind in pop]
     mean = sum(fits) / len(pop)
     stats.add("predator_fitness.avg", mean)
     stats.add("predator_fitness.min", min(fits))
     stats.add("predator_fitness.max", max(fits))
     return ("(%3i): Max: %6.2f, Avg: %6.2f, Min: %5.2f" %
             (gen, max(fits), mean, min(fits)))
Esempio n. 3
0
 def _record_stats(self, world):
     stats.add(self._game_type(), int(world.time / 1000))
Esempio n. 4
0
                     .format(e, EPISODES, agent.epsilon, quality, len(agent.memory), len(agent.memory_done), time_sum/100.0)
                    print(msg_str)
                    logger.info(msg_str)
                    print("quality: {:0.2f}".format(quality))
                    if quality_max < quality:
                        quality_max = quality
                    #	if quality_max > 15.0:
                    #		logger.info("Saving weights @ episode: {}/{}, quality: {:0.2f}".format(e, EPISODES, quality))
                    #		agent.save("/tmp/" + thisName + ".h5")
                    time_sum = 0.0
                    score_sum = 0.0
                    score_cnt = 0.0
                    time.sleep(2)
                break

        stats.add(e, game.moves, game.score, game.score / 100.0, agent.epsilon,
                  len(agent.memory_done))
        if int(e / 100) * 100 == e:
            stats.flush()

        steps_wo_r = 0
        if len(agent.memory) > BATCH_SIZE:
            #print "agent.replay.."
            agent.replay(BATCH_SIZE)

    for elem in stats_arr:
        e = elem[0]
        v = elem[1]
        i = int(v)
        sys.stdout.write("# %-10i | %s (%0.2f)\n" % (e, '=' * i, v))
Esempio n. 5
0
 def _record_stats(self, world):
     stats.add(self._game_type(), int(world.time / 1000))
Esempio n. 6
0
 def printStatsCreatures(self, pop, gen, dba, dbb, dbp):
     fits = [ind.fitness.values[0] for ind in pop]
     mean = sum(fits) / len(pop)
     reds = [funcs.gene2color(genome[-1]) for genome in pop]
     greens = [funcs.gene2color(genome[-2]) for genome in pop]
     blues = [funcs.gene2color(genome[-3]) for genome in pop]
     stats.add("creature_fitness.avg", mean)
     stats.add("creature_fitness.min", min(fits))
     stats.add("creature_fitness.max", max(fits))
     stats.add("creature.death_by_bush_procent",
               dbb * 1.0 / (dbb + dba + dbp))
     stats.add("creature.death_by_predator_procent",
               dbp * 1.0 / (dbb + dba + dbp))
     stats.add("creature_color.red", sum(reds) / len(reds))
     stats.add("creature_color.blue", sum(blues) / len(blues))
     stats.add("creature_color.green", sum(greens) / len(greens))
     return ("(%3i): Max: %6.2f, Avg: %6.2f, Min: %5.2f, DBBP: %.2f" %
             (gen, max(fits), mean, min(fits), dbb * 1.0 /
              (dbb + dbp + dba)))
Esempio n. 7
0
	def printStatsCreatures(self,pop,gen,dba,dbb,dbp):
		fits = [ind.fitness.values[0] for ind in pop]
		mean = sum(fits) / len(pop)
		reds = [funcs.gene2color(genome[-1]) for genome in pop]
		greens = [funcs.gene2color(genome[-2]) for genome in pop]
		blues = [funcs.gene2color(genome[-3]) for genome in pop]
		stats.add("creature_fitness.avg",mean)
		stats.add("creature_fitness.min",min(fits))
		stats.add("creature_fitness.max",max(fits))
		stats.add("creature.death_by_bush_procent",dbb*1.0/(dbb+dba+dbp))
		stats.add("creature.death_by_predator_procent",dbp*1.0/(dbb+dba+dbp))
		stats.add("creature_color.red", sum(reds)/len(reds))
		stats.add("creature_color.blue", sum(blues)/len(blues))
		stats.add("creature_color.green", sum(greens)/len(greens))
		return ("(%3i): Max: %6.2f, Avg: %6.2f, Min: %5.2f, DBBP: %.2f" % (gen, max(fits), mean, min(fits),dbb*1.0/(dbb+dbp+dba)))