Esempio n. 1
0
print(stats.pointbiserialr(apb,a))
print('kendalltau:')
print(stats.kendalltau(l,m))
print(stats.kendalltau(a,b))
print('linregress:')
print(stats.linregress(l,m))
print(stats.linregress(a,b))
print('\nINFERENTIAL')
print('ttest_1samp:')
print(stats.ttest_1samp(l,12))
print(stats.ttest_1samp(a,12))
print('ttest_ind:')
print(stats.ttest_ind(l,m))
print(stats.ttest_ind(a,b))
print('ttest_rel:')
print(stats.ttest_rel(l,m))
print(stats.ttest_rel(a,b))
print('chisquare:')
print(stats.chisquare(l))
print(stats.chisquare(a))
print('ks_2samp:')
print(stats.ks_2samp(l,m))
print(stats.ks_2samp(a,b))
print('mannwhitneyu:')
print(stats.mannwhitneyu(l,m))
print(stats.mannwhitneyu(a,b))
print('ranksums:')
print(stats.ranksums(l,m))
print(stats.ranksums(a,b))
print('wilcoxont:')
print(stats.wilcoxont(l,m))
Esempio n. 2
0
print 'kendalltau:'
print stats.kendalltau(l,m)
print stats.kendalltau(a,b)
print 'linregress:'
print stats.linregress(l,m)
print stats.linregress(a,b)

print '\nINFERENTIAL'
print 'ttest_1samp:'
print stats.ttest_1samp(l,12)
print stats.ttest_1samp(a,12)
print 'ttest_ind:'
print stats.ttest_ind(l,m)
print stats.ttest_ind(a,b)
print 'ttest_rel:'
print stats.ttest_rel(l,m)
print stats.ttest_rel(a,b)
print 'chisquare:'
print stats.chisquare(l)
print stats.chisquare(a)
print 'ks_2samp:'
print stats.ks_2samp(l,m)
print stats.ks_2samp(a,b)

print 'mannwhitneyu:'
print stats.mannwhitneyu(l,m)
print stats.mannwhitneyu(a,b)
print 'ranksums:'
print stats.ranksums(l,m)
print stats.ranksums(a,b)
print 'wilcoxont:'
Esempio n. 3
0

print('\n\nIndependent Samples t-test')

a = list(map(float,[11.,16.,20.,17.,10.,12.]))
b = list(map(float,[8.,11.,15.,11.,11.,12.,11.,7.]))
print('\n\nSHOULD BE ??? <p< (df=) ... ')
stats.ttest_ind(a,b,1)


print('\n\nRelated Samples t-test')

before = list(map(float,[11,16,20,17,10]))
after = list(map(float,[8,11,15,11,11]))
print('\n\nSHOULD BE t=+2.88, 0.01<p<0.05 (df=4) ... Basic Stats 1st ed, p.359')
stats.ttest_rel(before,after,1,'Before','After')


print("\n\nPearson's r")

y = list(map(float,[8,7,7,6,5,4,4,4,2,0]))
x = list(map(float,[0,0,1,1,1,2,2,3,3,4]))
print('SHOULD BE -0.94535 (N=10) ... Basic Stats 1st ed, p.190',x,y)
print(stats.pearsonr(x,y))


print("\n\nSpearman's r")

x = list(map(float,[4,1,9,8,3,5,6,2,7]))
y = list(map(float,[3,2,8,6,5,4,7,1,9]))
print('\nSHOULD BE +0.85 on the dot (N=9) ... Basic Stats 1st ed, p.193',x,y)
Esempio n. 4
0
print 'kendalltau:'
print stats.kendalltau(l, m)
print stats.kendalltau(a, b)
print 'linregress:'
print stats.linregress(l, m)
print stats.linregress(a, b)

print '\nINFERENTIAL'
print 'ttest_1samp:'
print stats.ttest_1samp(l, 12)
print stats.ttest_1samp(a, 12)
print 'ttest_ind:'
print stats.ttest_ind(l, m)
print stats.ttest_ind(a, b)
print 'ttest_rel:'
print stats.ttest_rel(l, m)
print stats.ttest_rel(a, b)
print 'chisquare:'
print stats.chisquare(l)
print stats.chisquare(a)
print 'ks_2samp:'
print stats.ks_2samp(l, m)
print stats.ks_2samp(a, b)

print 'mannwhitneyu:'
print stats.mannwhitneyu(l, m)
print stats.mannwhitneyu(a, b)
print 'ranksums:'
print stats.ranksums(l, m)
print stats.ranksums(a, b)
print 'wilcoxont:'
​
print(cluster_map)
​

rom scipy import stats
​
diff_exp_high = ((data['CFU'] + data['unk'])/2)/((data['poly'] + data['int'])/2) >= 2
diff_exp_low = ((data['CFU'] + data['unk'])/2)/((data['poly'] + data['int'])/2) <= 0.5
​
diff_exp_genes = data[diff_exp_high | diff_exp_low]
#print(diff_exp_genes)
for gene_name, row in diff_exp_genes.iterrows():
    sample1 = [row['CFU'], row['unk']]
    sample2 = [row['poly'], row['int']]
    # print(gene_name, stats.ttest_rel(sample1, sample2).pvalue)
    pval = stats.ttest_rel(sample1, sample2).pvalue
    if pval <= 0.05:
        print(gene_name, pval)
​
​
​
labels = list(kmeans.labels_)
genes = list(data.index.values)
​
goi_index = genes.index(sys.argv[2])
goi_cluster = labels[goi_index]
​
related_genes = []
for i, gene in enumerate(genes):
    if labels[i] == goi_cluster:
        related_genes.append(gene)