Esempio n. 1
1
 def test_pandas(self, close_figures):
     pc = PCA(pd.DataFrame(self.x))
     pc1 = PCA(self.x)
     assert_allclose(pc.factors.values, pc1.factors)
     fig = pc.plot_scree()
     fig = pc.plot_scree(ncomp=10)
     fig = pc.plot_scree(log_scale=False)
     fig = pc.plot_rsquare()
     fig = pc.plot_rsquare(ncomp=5)
     proj = pc.project(2)
     PCA(pd.DataFrame(self.x), ncomp=4, gls=True)
     PCA(pd.DataFrame(self.x), ncomp=4, standardize=False)
Esempio n. 2
0
    def test_rsquare(self):
        x = self.x + 0.0
        mu = x.mean(0)
        x_demean = x - mu
        std = np.std(x, 0)
        x_std = x_demean / std

        pc = PCA(self.x)
        nvar = x.shape[1]
        rsquare = np.zeros(nvar + 1)
        tss = np.sum(x_std**2)
        for i in range(nvar + 1):
            errors = x_std - pc.project(i, transform=False, unweight=False)
            rsquare[i] = 1.0 - np.sum(errors**2) / tss
        assert_allclose(rsquare, pc.rsquare)

        pc = PCA(self.x, standardize=False)
        tss = np.sum(x_demean**2)
        for i in range(nvar + 1):
            errors = x_demean - pc.project(i, transform=False, unweight=False)
            rsquare[i] = 1.0 - np.sum(errors**2) / tss
        assert_allclose(rsquare, pc.rsquare)

        pc = PCA(self.x, standardize=False, demean=False)
        tss = np.sum(x**2)
        for i in range(nvar + 1):
            errors = x - pc.project(i, transform=False, unweight=False)
            rsquare[i] = 1.0 - np.sum(errors**2) / tss
        assert_allclose(rsquare, pc.rsquare)
Esempio n. 3
0
    def test_rsquare(self):
        x = self.x + 0.0
        mu = x.mean(0)
        x_demean = x - mu
        std = np.std(x, 0)
        x_std = x_demean / std

        pc = PCA(self.x)
        nvar = x.shape[1]
        rsquare = np.zeros(nvar + 1)
        tss = np.sum(x_std ** 2)
        for i in range(nvar + 1):
            errors = x_std - pc.project(i, transform=False, unweight=False)
            rsquare[i] = 1.0 - np.sum(errors ** 2) / tss
        assert_allclose(rsquare, pc.rsquare)

        pc = PCA(self.x, standardize=False)
        tss = np.sum(x_demean ** 2)
        for i in range(nvar + 1):
            errors = x_demean - pc.project(i, transform=False, unweight=False)
            rsquare[i] = 1.0 - np.sum(errors ** 2) / tss
        assert_allclose(rsquare, pc.rsquare)

        pc = PCA(self.x, standardize=False, demean=False)
        tss = np.sum(x ** 2)
        for i in range(nvar + 1):
            errors = x - pc.project(i, transform=False, unweight=False)
            rsquare[i] = 1.0 - np.sum(errors ** 2) / tss
        assert_allclose(rsquare, pc.rsquare)
Esempio n. 4
0
 def test_pandas(self):
     pc = PCA(pd.DataFrame(self.x))
     pc1 = PCA(self.x)
     assert_equal(pc.factors.values, pc1.factors)
     fig = pc.plot_scree()
     fig = pc.plot_scree(ncomp=10)
     fig = pc.plot_scree(log_scale=False)
     fig = pc.plot_rsquare()
     fig = pc.plot_rsquare(ncomp=5)
     proj = pc.project(2)
     PCA(pd.DataFrame(self.x), ncomp=4, gls=True)
     PCA(pd.DataFrame(self.x), ncomp=4, standardize=False)