Esempio n. 1
0
def test_confint_simult():
    # example from book for simultaneous confint

    m = [526.29, 54.69, 25.13]
    cov = [[5808.06, 597.84, 222.03], [597.84, 126.05, 23.39],
           [222.03, 23.39, 23.11]]
    nobs = 87
    res_ci = confint_mvmean_fromstats(m,
                                      cov,
                                      nobs,
                                      lin_transf=np.eye(3),
                                      simult=True)

    cii = [
        confint_mvmean_fromstats(m,
                                 cov,
                                 nobs,
                                 lin_transf=np.eye(3)[i],
                                 simult=True)[:2] for i in range(3)
    ]
    cii = np.array(cii).squeeze()
    # these might use rounded numbers in intermediate computation
    res_ci_book = np.array([[503.06, 550.12], [51.22, 58.16], [23.65, 26.61]])

    assert_allclose(res_ci[0], res_ci_book[:, 0], rtol=1e-3)  # low
    assert_allclose(res_ci[0], res_ci_book[:, 0], rtol=1e-3)  # upp

    assert_allclose(res_ci[0], cii[:, 0], rtol=1e-13)
    assert_allclose(res_ci[1], cii[:, 1], rtol=1e-13)

    res_constr = confint_mvmean_fromstats(m,
                                          cov,
                                          nobs,
                                          lin_transf=[0, 1, -1],
                                          simult=True)

    assert_allclose(res_constr[0], 29.56 - 3.12, rtol=1e-3)
    assert_allclose(res_constr[1], 29.56 + 3.12, rtol=1e-3)

    # TODO: this assumes separate constraints,
    #       but we want multiplicity correction
    # test if several constraints or transformations work
    # original, flipping sign, multiply by 2
    lt = [[0, 1, -1], [0, -1, 1], [0, 2, -2]]
    res_constr2 = confint_mvmean_fromstats(m,
                                           cov,
                                           nobs,
                                           lin_transf=lt,
                                           simult=True)

    lows = res_constr[0], -res_constr[1], 2 * res_constr[0]
    upps = res_constr[1], -res_constr[0], 2 * res_constr[1]
    # TODO: check return dimensions
    lows = np.asarray(lows).squeeze()
    upps = np.asarray(upps).squeeze()
    assert_allclose(res_constr2[0], lows, rtol=1e-13)
    assert_allclose(res_constr2[1], upps, rtol=1e-13)
Esempio n. 2
0
def test_mv_mean():
    # names = ['id', 'mpg1', 'mpg2', 'add']
    x = np.asarray([[1.0, 24.0, 23.5, 1.0], [2.0, 25.0, 24.5, 1.0],
                    [3.0, 21.0, 20.5, 1.0], [4.0, 22.0, 20.5, 1.0],
                    [5.0, 23.0, 22.5, 1.0], [6.0, 18.0, 16.5, 1.0],
                    [7.0, 17.0, 16.5, 1.0], [8.0, 28.0, 27.5, 1.0],
                    [9.0, 24.0, 23.5, 1.0], [10.0, 27.0, 25.5, 1.0],
                    [11.0, 21.0, 20.5, 1.0], [12.0, 23.0, 22.5, 1.0],
                    [1.0, 20.0, 19.0, 0.0], [2.0, 23.0, 22.0, 0.0],
                    [3.0, 21.0, 20.0, 0.0], [4.0, 25.0, 24.0, 0.0],
                    [5.0, 18.0, 17.0, 0.0], [6.0, 17.0, 16.0, 0.0],
                    [7.0, 18.0, 17.0, 0.0], [8.0, 24.0, 23.0, 0.0],
                    [9.0, 20.0, 19.0, 0.0], [10.0, 24.0, 22.0, 0.0],
                    [11.0, 23.0, 22.0, 0.0], [12.0, 19.0, 18.0, 0.0]])

    res = smmv.test_mvmean(x[:, 1:3], [21, 21])

    res_stata = Holder(p_F=1.25062334808e-09,
                       df_r=22,
                       df_m=2,
                       F=59.91609589041116,
                       T2=125.2791095890415)

    assert_allclose(res.statistic, res_stata.F, rtol=1e-10)
    assert_allclose(res.pvalue, res_stata.p_F, rtol=1e-10)
    assert_allclose(res.t2, res_stata.T2, rtol=1e-10)
    assert_equal(res.df, [res_stata.df_m, res_stata.df_r])

    # diff of paired sample
    mask = x[:, -1] == 1
    x1 = x[mask, 1:3]
    x0 = x[~mask, 1:3]
    res_p = smmv.test_mvmean(x1 - x0, [0, 0])

    # result Stata hotelling
    res_stata = Holder(
        T2=9.698067632850247,
        df=10,
        k=2,
        N=12,
        F=4.4082126,  # not in return List
        p_F=0.0424)  # not in return List

    res = res_p
    assert_allclose(res.statistic, res_stata.F, atol=5e-7)
    assert_allclose(res.pvalue, res_stata.p_F, atol=5e-4)
    assert_allclose(res.t2, res_stata.T2, rtol=1e-10)
    assert_equal(res.df, [res_stata.k, res_stata.df])

    # mvtest means diff1 diff2, zero
    res_stata = Holder(p_F=.0423949782937231,
                       df_r=10,
                       df_m=2,
                       F=4.408212560386478,
                       T2=9.69806763285025)

    assert_allclose(res.statistic, res_stata.F, rtol=1e-12)
    assert_allclose(res.pvalue, res_stata.p_F, rtol=1e-12)
    assert_allclose(res.t2, res_stata.T2, rtol=1e-12)
    assert_equal(res.df, [res_stata.df_m, res_stata.df_r])

    dw = weightstats.DescrStatsW(x)
    ci0 = dw.tconfint_mean(alpha=0.05)

    nobs = len(x[:, 1:])
    ci1 = confint_mvmean_fromstats(dw.mean,
                                   np.diag(dw.var),
                                   nobs,
                                   lin_transf=np.eye(4),
                                   alpha=0.05)
    ci2 = confint_mvmean_fromstats(dw.mean,
                                   dw.cov,
                                   nobs,
                                   lin_transf=np.eye(4),
                                   alpha=0.05)

    assert_allclose(ci1[:2], ci0, rtol=1e-13)
    assert_allclose(ci2[:2], ci0, rtol=1e-13)

    # test from data
    res = smmv.confint_mvmean(x, lin_transf=np.eye(4), alpha=0.05)
    assert_allclose(res, ci2, rtol=1e-13)