Esempio n. 1
0
    def _fit_forecaster(self, y, X=None):
        """Fit forecaster to training data.

        Wraps Statsmodel's VAR fit method.

        Parameters
        ----------
        y : pd.DataFrame
            Target time series to which to fit the forecaster.
        fh : int, list, np.array or ForecastingHorizon, optional (default=None)
            The forecasters horizon with the steps ahead to to predict.
        X : pd.DataFrame, optional (default=None)

        Returns
        -------
        self : returns an instance of self.
        """
        self._forecaster = _VAR(endog=y, exog=X, missing=self.missing)
        self._fitted_forecaster = self._forecaster.fit(
            trend=self.trend,
            maxlags=self.maxlags,
            method=self.method,
            verbose=self.verbose,
        )
        return self
Esempio n. 2
0
def VAR(ts, max_order=15):
    """Vector Autoregressive Baseline Generator."""
    # VAR model
    if isinstance(ts, pd.DataFrame):
        var = _VAR(ts.values)
    elif isinstance(ts, np.ndarray):
        var = _VAR(ts)
    # optimal order
    order = var.select_order(max_order)['aic']
    # fit model
    model = var.fit(order)
    # simulation
    ts_gen = var_util.varsim(model.coefs,
                             model.intercept,
                             model.sigma_u,
                             steps=len(ts.values))
    return ts_gen
Esempio n. 3
0
File: var.py Progetto: zjy97/qtrader
def VAR(df, max_order=15, return_model=False):
    """Vector Autoregressive Baseline Generator."""
    # VAR model
    var = _VAR(df)
    # fit model
    model = var.fit(maxlags=max_order, ic='aic')
    # simulation
    ts_gen = model.simulate_var(len(df.values))
    # Create pandas DataFrame
    df_gen = pd.DataFrame(ts_gen,
                          columns=df.columns,
                          index=df.index[-len(ts_gen):])
    if return_model:
        return df_gen, model
    else:
        return df_gen
Esempio n. 4
0
def test_VAR_against_statsmodels():
    """Compares Sktime's and Statsmodel's VAR."""
    train, test = temporal_train_test_split(df)
    sktime_model = VAR()
    fh = ForecastingHorizon([1, 3, 4, 5, 7, 9])
    sktime_model.fit(train)
    y_pred = sktime_model.predict(fh=fh)

    stats = _VAR(train)
    stats_fit = stats.fit()
    fh_int = fh.to_relative(train.index[-1])
    lagged = stats_fit.k_ar
    y_pred_stats = stats_fit.forecast(train.values[-lagged:], steps=fh_int[-1])
    new_arr = []
    for i in fh_int:
        new_arr.append(y_pred_stats[i - 1])
    assert_allclose(y_pred, new_arr)