Esempio n. 1
0
 def test_varmax_with_intercept(self):
     ts_data = self.get_data_for_varmax()
     f_name='varmax_with_intercept.pmml'
     model = VARMAX(ts_data, order=(1,1))
     result = model.fit()
     StatsmodelsToPmml(result, f_name, conf_int=[80,95])
     self.assertEqual(os.path.isfile(f_name),True)
Esempio n. 2
0
 def test_varmax_without_intercept2(self):
     ts_data = self.get_data_for_varmax()
     f_name='varmax_without_intercept2.pmml'
     model = VARMAX(ts_data, order=(1,1), trend=None)
     result = model.fit()
     StatsmodelsToPmml(result, f_name)
     self.assertEqual(os.path.isfile(f_name),True)
Esempio n. 3
0
    def varma(self, df, host):

        pd.plotting.register_matplotlib_converters()
        df_diffed, no_diffs = Helper.diff_test(df)

        print(df_diffed)
        df_diffed.replace([np.inf, -np.inf], np.nan)
        cols = df_diffed.columns
        df_diffed = df_diffed.dropna()
        nobs = int(len(df_diffed) / 10) + 2
        train = df_diffed[:-nobs]
        test = df_diffed[-nobs:]
        
        model = VARMAX(train, order=(2,2), trend='c')
        results = model.fit(maxiter=1000, disp=False)
        print(results.summary())

        df_forecast = results.forecast(nobs)

        print(df_forecast)
        df_fixed = Helper.reverse_diff(df_forecast, df, nobs, no_diffs)
        print(df_fixed)

        for col in df.columns:
            print("-- RMSE --")
            print(rmse(test[col], df_fixed[col + '_forecast']))
            print("-- Mean --")
            print(test[col].mean())
            df[col].plot(legend=True)
            df_fixed[col + '_forecast'].plot(legend=True)
            plt.show()
Esempio n. 4
0
 def test_varmax_without_intercept(self):
     ts_data = self.statsmodels_data_helper.get_data_for_varmax()
     f_name = 'varmax_without_intercept.pmml'
     model = VARMAX(ts_data, order=(1, 1), trend=None)
     result = model.fit()
     ArimaToPMML(result, f_name)
     self.assertEqual(self.schema.is_valid(f_name), True)
Esempio n. 5
0
 def VARMAXfit(self, endog, exog, order=(2, 0), maxiter=1000):
     model = VARMAX(endog.dropna(),
                    order=order,
                    trend='n',
                    exog=exog.dropna())
     model_fit = model.fit(maxiter=maxiter, disp=False)
     return model_fit
Esempio n. 6
0
    def VARMAXforecastPlot(self,
                           endog,
                           train_fraction=0.66,
                           steps=1,
                           order=(2, 0),
                           maxiter=1000,
                           verbose=False,
                           error_cov_type='diagonal',
                           title='',
                           titleFontSize=12,
                           labelFontSize=10,
                           figureSize=(20, 6),
                           lineWidth=1.0):
        sns.set_theme()

        cleaned = endog.dropna()
        size = int(len(cleaned) * train_fraction)
        timestamp = cleaned.index.to_timestamp().values.tolist()
        train = cleaned[0:size].to_numpy().tolist()
        test = cleaned[size:len(cleaned)].to_numpy().tolist()

        history = [z for z in train]
        predictions = train
        interval = 10
        for t in range(len(test)):
            model = VARMAX(history, order=order, error_cov_type=error_cov_type)
            model_fit = model.fit(maxiter=maxiter, disp=False)
            output = model_fit.forecast(steps)
            yhat = output[0].tolist()
            predictions.append(yhat)
            obs = test[t]
            history.append(obs)
            if (t % 10 == 0 and verbose):
                print('percent done: ' + str(t / len(test)))
        print('percent done: 1.00')

        if (len(endog.dropna().to_numpy().tolist()) != len(predictions)):
            print('List lengths do not match')

        col = 0
        for val in endog:
            plt.subplots(figsize=figureSize)
            plt.title(title, fontsize=titleFontSize)
            plt.xlabel('Timestamp', fontsize=labelFontSize)
            plt.ylabel(endog[val].name, fontsize=labelFontSize)
            column = [row[col] for row in predictions]
            plt.plot(timestamp,
                     column,
                     color='red',
                     linewidth=lineWidth,
                     linestyle='--')
            col += 1
            plt.plot(timestamp,
                     endog[val].dropna().to_numpy().tolist(),
                     linewidth=lineWidth)
            plt.legend(labels=('prediction', endog[val].name))
            plt.show()

        return predictions
Esempio n. 7
0
def fit_varmax(data, p, q, exog=None, summary=True):
    model = VARMAX(data,
                   order=(p, q),
                   exog=exog,
                   initialization='approximate_diffuse')
    model_fit = model.fit(maxiter=50, disp=False)
    if summary:
        print(model_fit.summary())
    return model_fit
Esempio n. 8
0
 def VARMAXvma(self,
               endog,
               order=(2, 0),
               error_cov_type='diagonal',
               maxiter=1000,
               disp=False):
     model = VARMAX(endog.dropna(),
                    order=order,
                    error_cov_type=error_cov_type)
     model_fit = model.fit(maxiter=maxiter, disp=disp)
     return model_fit
Esempio n. 9
0
#        outcome = Y.tail(predictions.shape[0])
#    else:
#        outcome = Y
#    accuracy_matrix = outcome*predictions
#    accuracy_matrix.values
#    accuracy.append(np.sum(np.sum((accuracy_matrix > 0)))/accuracy_matrix.size)
endog_Y = X.drop(columns=[
    'XMRspread', 'XMRvolume', 'XMRbasevolume', 'XRPspread', 'XRPvolume',
    'XRPbasevolume', 'LTCspread', 'LTCvolume', 'LTCbasevolume', 'DASHspread',
    'DASHvolume', 'DASHbasevolume', 'ETHspread', 'ETHvolume', 'ETHbasevolume'
])
exog_X = X.drop(
    columns=['ETHreturn', 'XRPreturn', 'LTCreturn', 'DASHreturn', 'XMRreturn'])
p = 1
model = VARMAX(endog=endog_Y, order=(p, 0), exog=exog_X)
results = model.fit(maxiter=0)
predictions = results.predict()
predictions = (predictions.shift(-1)).dropna()

if predictions.shape[0] != Y.shape[0]:
    outcome = ((endog_Y.tail(predictions.shape[0])).shift(-1)).dropna()
else:
    outcome = (endog_Y.shift(-1)).dropna()

accuracy_matrix = np.sign(outcome) * np.sign(predictions)
accuracy_matrix.values
accuracy = (np.sum(np.sum((accuracy_matrix > 0.0))) / accuracy_matrix.size)

# turn into numpy array
endog_Y_test = X_test.drop(columns=[
    'XMRspread', 'XMRvolume', 'XMRbasevolume', 'XRPspread', 'XRPvolume',