def call_analysis(analysis_func, sliceno_, q, preserve_result, parent_pid, **kw): try: status._start('analysis(%d)' % (sliceno_,), parent_pid, 't') os.close(_prof_fd) for stupid_inconsistent_name in ('sliceno', 'index'): if stupid_inconsistent_name in kw: kw[stupid_inconsistent_name] = sliceno_ setattr(g, stupid_inconsistent_name, sliceno_) for dw in dataset._datasetwriters.values(): if dw._for_single_slice is None: dw._set_slice(sliceno_) res = analysis_func(**kw) if preserve_result: # Remove defaultdicts until we find one with a picklable default_factory. # (This is what you end up doing manually anyway.) def picklable(v): try: pickle.dumps(v, pickle.HIGHEST_PROTOCOL) return True except Exception: return False def fixup(d): if isinstance(d, defaultdict) and not picklable(d.default_factory): if not d: return {} v = next(iteritems(d)) if isinstance(v, defaultdict) and not picklable(v.default_factory): return {k: fixup(v) for k, v in iteritems(d)} else: return dict(d) else: return d def save(item, name): blob.save(fixup(item), name, sliceno=sliceno_, temp=True) if isinstance(res, tuple): if sliceno_ == 0: blob.save(len(res), "Analysis.tuple", temp=True) for ix, item in enumerate(res): save(item, "Analysis.%d." % (ix,)) else: if sliceno_ == 0: blob.save(False, "Analysis.tuple", temp=True) save(res, "Analysis.") from extras import saved_files dw_lens = {} dw_minmax = {} for name, dw in dataset._datasetwriters.items(): if dw._for_single_slice in (None, sliceno_,): dw.close() dw_lens[name] = dw._lens dw_minmax[name] = dw._minmax status._end() q.put((sliceno_, time(), saved_files, dw_lens, dw_minmax, None,)) except: status._end() q.put((sliceno_, time(), {}, {}, {}, fmt_tb(1),)) print_exc() sleep(5) # give launcher time to report error (and kill us) exitfunction()
def execute_process(workdir, jobid, slices, result_directory, common_directory, source_directory, index=None, workspaces=None, daemon_url=None, subjob_cookie=None, parent_pid=0): g.JOBID = jobid setproctitle('launch') path = os.path.join(workdir, jobid) try: os.chdir(path) except Exception: print("Cannot cd to workdir", path) exit(1) g.params = params = job_params() method_ref = import_module(params.package + '.a_' + params.method) g.sliceno = -1 if workspaces: jobid_module.put_workspaces(workspaces) def maybe_dataset(v): if isinstance(v, list): return [maybe_dataset(e) for e in v] if not v: return '' try: return dataset.Dataset(v) except IOError: return v datasets = DotDict( {k: maybe_dataset(v) for k, v in params.datasets.items()}) g.options = params.options g.datasets = datasets g.jobids = params.jobids method_ref.options = params.options method_ref.datasets = datasets method_ref.jobids = params.jobids # compatibility names g.SLICES = slices g.JOBID = jobid g.jobid = jobid g.METHOD = params.method g.WORKSPACEPATH = workdir g.CAPTION = params.caption g.PACKAGE = params.package g.RESULT_DIRECTORY = result_directory g.COMMON_DIRECTORY = common_directory g.SOURCE_DIRECTORY = source_directory g.index = -1 g.daemon_url = daemon_url g.running = 'launch' status._start('%s %s' % ( jobid, params.method, ), parent_pid) def dummy(): pass prepare_func = getattr(method_ref, 'prepare', dummy) analysis_func = getattr(method_ref, 'analysis', dummy) synthesis_func = getattr(method_ref, 'synthesis', dummy) synthesis_needs_analysis = 'analysis_res' in getarglist(synthesis_func) # A chain must be finished from the back, so sort on that. sortnum_cache = {} def dw_sortnum(name): if name not in sortnum_cache: dw = dataset._datasetwriters[name] if dw.previous and dw.previous.startswith(jobid + '/'): pname = dw.previous.split('/')[1] num = dw_sortnum(pname) + 1 else: num = 0 sortnum_cache[name] = num return sortnum_cache[name] prof = {} if prepare_func is dummy: prof['prepare'] = 0 # truthish! else: t = time() g.running = 'prepare' g.subjob_cookie = subjob_cookie setproctitle(g.running) with status.status(g.running): g.prepare_res = method_ref.prepare(**args_for(method_ref.prepare)) to_finish = [ dw.name for dw in dataset._datasetwriters.values() if dw._started ] if to_finish: with status.status("Finishing datasets"): for name in sorted(to_finish, key=dw_sortnum): dataset._datasetwriters[name].finish() prof['prepare'] = time() - t setproctitle('launch') from extras import saved_files if analysis_func is dummy: prof['per_slice'] = [] prof['analysis'] = 0 else: t = time() g.running = 'analysis' g.subjob_cookie = None # subjobs are not allowed from analysis with status.status( 'Waiting for all slices to finish analysis') as update: g.update_top_status = update prof['per_slice'], files, g.analysis_res = fork_analysis( slices, analysis_func, args_for(analysis_func), synthesis_needs_analysis) del g.update_top_status prof['analysis'] = time() - t saved_files.update(files) t = time() g.running = 'synthesis' g.subjob_cookie = subjob_cookie setproctitle(g.running) with status.status(g.running): synthesis_res = synthesis_func(**args_for(synthesis_func)) if synthesis_res is not None: blob.save(synthesis_res, temp=False) if dataset._datasetwriters: with status.status("Finishing datasets"): for name in sorted(dataset._datasetwriters, key=dw_sortnum): dataset._datasetwriters[name].finish() t = time() - t prof['synthesis'] = t from subjobs import _record status._end() return None, (prof, saved_files, _record)