Esempio n. 1
0
              datatype='float',
              extractor='avg_sql.packets')

# t2 is used to derive the time series metrics values over the duration
t2 = AppResponseTable.create('sql-overall-ts', source='sql_summaries')
# Add this time key column is the main differentiator between t2 and t1
t2.copy_columns(t1)
t2.add_column('start_time',
              'Time',
              datatype='time',
              iskey=True,
              extractor='start_time')

t3 = AppResponseTimeSeriesTable.create('sql-duration-ts',
                                       tables={'base': t2},
                                       pivot_column_name='db_process',
                                       value_column_name='sql_duration',
                                       hide_pivot_field=True)

t4 = AppResponseTopNTimeSeriesTable.create('sql-duration',
                                           tables={'overall': t1},
                                           related_tables={'ts': t3},
                                           pivot_column_name='db_process',
                                           value_column_name='sql_duration',
                                           n=topn)

report.add_widget(c3.TimeSeriesWidget,
                  t4,
                  "Top {} SQL Durations".format(topn),
                  width=12)
              extractor='rtp.media_type_name')
t1.add_column('packets', 'Number of RTP Packets', datatype='integer',
              extractor='sum_rtp.packets')
t1.add_column('bytes', 'Number of RTP Bytes',
              datatype='integer', extractor='sum_rtp.traffic_bytes')

# t2 is used to derive the time series metrics values over the duration
t2 = AppResponseTable.create('uc-overall-ts', source='aggregates')
# Add this time key column is the main differentiator between t2 and t1
t2.copy_columns(t1)
t2.add_column('start_time', 'Time', datatype='time', iskey=True,
              extractor='start_time')

t3 = AppResponseTimeSeriesTable.create('uc-packets-ts',
                                       tables={'base': t2},
                                       pivot_column_name='media_type_name',
                                       value_column_name='packets',
                                       hide_pivot_field=True)

t4 = AppResponseTopNTimeSeriesTable.create('uc-packets',
                                           tables={'overall': t1},
                                           related_tables={'ts': t3},
                                           pivot_column_name='media_type_name',
                                           value_column_name='packets',
                                           n=topn)

report.add_widget(c3.TimeSeriesWidget, t4,
                  "RTP Packets/Top {} Media Type".format(topn),
                  width=12)

t5 = AppResponseTimeSeriesTable.create('uc-bytes-ts',
              extractor='avg_traffic.total_bytes_ps')
t1.add_column('srv_response_time', 'Average Server Response Time (seconds)',
              datatype='float', extractor='avg_tcp.srv_response_time')
t1.add_column('usr_response_time', 'Average User Response Time (seconds)',
              datatype='float', extractor='avg_tcp.user_response_time')

# t2 is used to derive the time series metrics values over the duration
t2 = AppResponseTable.create('applications-overall-ts', source='aggregates')
# Add this time key column is the main differentiator between t2 and t1
t2.copy_columns(t1)
t2.add_column('start_time', 'Time', datatype='time', iskey=True,
              extractor='start_time')

t3 = AppResponseTimeSeriesTable.create('app-throughput-ts',
                                       tables={'base': t2},
                                       pivot_column_name='app_name',
                                       value_column_name='total_bytes',
                                       hide_pivot_field=True)

t4 = AppResponseTopNTimeSeriesTable.create('app-throughput',
                                           tables={'overall': t1},
                                           related_tables={'ts': t3},
                                           pivot_column_name='app_name',
                                           value_column_name='total_bytes',
                                           n=topn)

report.add_widget(c3.TimeSeriesWidget, t4,
                  "Apps/Top {} Throughput".format(topn),
                  width=12)

t5 = AppResponseTimeSeriesTable.create('app-srv-resp-ts',
             'DB Instance',
             datatype='string',
             iskey=True,
             extractor='db.instance')
t.add_column('active_sessions',
             'Concurrent Active DB Sessions',
             datatype='float',
             extractor='avg_db.active_sessions')
t.add_column('active_time',
             'Total Duration of Active Sessions',
             datatype='float',
             extractor='sum_db.session_active_time')

t1 = AppResponseTimeSeriesTable.create('db-sessions',
                                       tables={'base': t},
                                       pivot_column_label='DB Instances',
                                       pivot_column_name='db_instance',
                                       value_column_name='active_sessions')

report.add_widget(c3.TimeSeriesWidget,
                  t1,
                  'Concurrent Active DB Sessions',
                  width=12)

t2 = AppResponseTimeSeriesTable.create('db-time',
                                       tables={'base': t},
                                       pivot_column_label='DB Instance',
                                       pivot_column_name='db_instance',
                                       value_column_name='active_time')
report.add_widget(c3.TimeSeriesWidget,
                  t2,
Esempio n. 5
0
             extractor='web.page.family.id')
t.add_column('page_family_name',
             'Web Page Family Name',
             datatype='string',
             extractor='web.page.family.name')
t.add_column('pages',
             'Number of Pages Viewed',
             datatype='integer',
             extractor='sum_web.pages')
t.add_column('page_bps',
             'Average Page Throughput (BPS)',
             datatype='float',
             extractor='avg_web.traffic_bytes_ps')

t1 = AppResponseTimeSeriesTable.create('web-pages',
                                       tables={'base': t},
                                       pivot_column_label='App Names',
                                       pivot_column_name='page_family_name',
                                       value_column_name='pages')

report.add_widget(yui3.TimeSeriesWidget, t1, 'Number of Pages', width=12)

t2 = AppResponseTimeSeriesTable.create('web-page-bps',
                                       tables={'base': t},
                                       pivot_column_name='page_family_name',
                                       value_column_name='page_bps')
report.add_widget(yui3.TimeSeriesWidget,
                  t2,
                  'Average Page Throughput',
                  width=12)
             datatype='string',
             iskey=True,
             extractor='rtp.media_type')
t.add_column('media_type_name',
             'Media Type Name',
             datatype='string',
             extractor='rtp.media_type_name')
t.add_column('packets',
             'Number of RTP Packets',
             datatype='integer',
             extractor='sum_rtp.packets')
t.add_column('bytes',
             'Number of RTP Packets',
             datatype='float',
             extractor='sum_rtp.traffic_bytes')

t1 = AppResponseTimeSeriesTable.create('uc-packets',
                                       tables={'base': t},
                                       pivot_column_label='Media Types',
                                       pivot_column_name='media_type_name',
                                       value_column_name='packets')

report.add_widget(c3.TimeSeriesWidget, t1, 'Number of Packets', width=12)

t2 = AppResponseTimeSeriesTable.create('uc-bytes',
                                       tables={'base': t},
                                       pivot_column_label='Media Types',
                                       pivot_column_name='media_type_name',
                                       value_column_name='bytes')
report.add_widget(c3.TimeSeriesWidget, t2, 'Number of Bytes', width=12)
Esempio n. 7
0
             'Client Process Name',
             datatype='string',
             iskey=True,
             extractor='db.process_name')
t.add_column('sql_duration',
             'Transaction Time',
             datatype='float',
             extractor='avg_sql.duration')
t.add_column('sql_packets',
             'Average Packets',
             datatype='float',
             extractor='avg_sql.packets')

t1 = AppResponseTimeSeriesTable.create('sql-duration-ts',
                                       tables={'base': t},
                                       pivot_column_label='SQL Process Names',
                                       pivot_column_name='db_process',
                                       value_column_name='sql_duration')

report.add_widget(c3.TimeSeriesWidget,
                  t1,
                  'Average Transaction Time (Seconds)',
                  width=12)

t2 = AppResponseTimeSeriesTable.create('sql-packets',
                                       tables={'base': t},
                                       pivot_column_label='SQL Process Names',
                                       pivot_column_name='db_process',
                                       value_column_name='sql_packets')

report.add_widget(c3.TimeSeriesWidget, t2, 'Average SQL Packets', width=12)
Esempio n. 8
0
              extractor='sum_db.session_active_time')

# t2 is used to derive the time series metrics values over the duration
t2 = AppResponseTable.create('db-session-overall-ts',
                             source='dbsession_summaries')
# Add this time key column is the main differentiator between t2 and t1
t2.copy_columns(t1)
t2.add_column('start_time',
              'Time',
              datatype='time',
              iskey=True,
              extractor='start_time')

t3 = AppResponseTimeSeriesTable.create('db-active-session-ts',
                                       tables={'base': t2},
                                       pivot_column_name='db_instance',
                                       value_column_name='active_sessions',
                                       hide_pivot_field=True)

t4 = AppResponseTopNTimeSeriesTable.create('db-active-session',
                                           tables={'overall': t1},
                                           related_tables={'ts': t3},
                                           pivot_column_name='db_instance',
                                           value_column_name='active_sessions',
                                           n=topn)

report.add_widget(c3.TimeSeriesWidget,
                  t4,
                  "DB Sessions/Top {} Active Sessions".format(topn),
                  width=12)
              datatype='float',
              extractor='avg_web.traffic_bytes_ps')

# t2 is used to derive the time series metrics values over the duration
t2 = AppResponseTable.create('wta-overall-ts', source='aggregates')
# Add this time key column is the main differentiator between t2 and t1
t2.copy_columns(t1)
t2.add_column('start_time',
              'Time',
              datatype='time',
              iskey=True,
              extractor='start_time')

t3 = AppResponseTimeSeriesTable.create('wta-pages-ts',
                                       tables={'base': t2},
                                       pivot_column_name='page_family_name',
                                       value_column_name='pages',
                                       hide_pivot_field=True)

t4 = AppResponseTopNTimeSeriesTable.create(
    'wta-pages',
    tables={'overall': t1},
    related_tables={'ts': t3},
    pivot_column_name='page_family_name',
    value_column_name='pages',
    n=topn)

report.add_widget(c3.TimeSeriesWidget,
                  t4,
                  "Page Families/Top {} Pages Viewed".format(topn),
                  width=12)
t.add_column('srv_response_time',
             'Average Server Response Time (seconds)',
             datatype='float',
             extractor='avg_tcp.srv_response_time')
t.add_column('usr_response_time',
             'Average User Response Time (seconds)',
             datatype='float',
             extractor='avg_tcp.user_response_time')
t.add_column('total_bytes',
             'Average Bytes per Second',
             datatype='float',
             extractor='avg_traffic.total_bytes_ps')

t1 = AppResponseTimeSeriesTable.create('application-srv-response-time',
                                       tables={'base': t},
                                       pivot_column_label='App Names',
                                       pivot_column_name='app_name',
                                       value_column_name='srv_response_time')

report.add_widget(c3.TimeSeriesWidget, t1, 'Server Response Time', width=12)

t2 = AppResponseTimeSeriesTable.create('application-user-resp-time',
                                       tables={'base': t},
                                       pivot_column_name='app_name',
                                       value_column_name='usr_response_time')
report.add_widget(c3.TimeSeriesWidget, t2, 'Server Response Time', width=12)

t3 = AppResponseTimeSeriesTable.create('application-throughput',
                                       tables={'base': t},
                                       pivot_column_name='app_name',
                                       value_column_name='total_bytes')