def __init__(self,
                 state_id,
                 model,
                 model_name=None,
                 instance_type=None,
                 tags=None,
                 **kwargs):
        """
        Args:
            state_id (str): State name whose length **must be** less than or equal to 128 unicode characters. State names **must be** unique within the scope of the whole state machine.
            model (sagemaker.model.Model): The SageMaker model to use in the ModelStep. If :py:class:`TrainingStep` was used to train the model and saving the model is the next step in the workflow, the output of :py:func:`TrainingStep.get_expected_model()` can be passed here.
            model_name (str or Placeholder, optional): Specify a model name, this is required for creating the model. We recommend to use :py:class:`~stepfunctions.inputs.ExecutionInput` placeholder collection to pass the value dynamically in each execution.
            instance_type (str, optional): The EC2 instance type to deploy this Model to. For example, 'ml.p2.xlarge'.
            tags (list[dict] or Placeholders, optional): `List of tags <https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html>`_ to associate with the resource.
            parameters(dict, optional): The value of this field is merged with other arguments to become the request payload for SageMaker `CreateModel <https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html>`_. (Default: None)
                You can use `parameters` to override the value provided by other arguments and specify any field's value dynamically using `Placeholders <https://aws-step-functions-data-science-sdk.readthedocs.io/en/stable/placeholders.html?highlight=placeholder#stepfunctions.inputs.Placeholder>`_.
        """
        if isinstance(model, FrameworkModel):
            model_parameters = model_config(model=model,
                                            instance_type=instance_type,
                                            role=model.role,
                                            image_uri=model.image_uri)
            if model_name:
                model_parameters['ModelName'] = model_name
        elif isinstance(model, Model):
            model_parameters = {
                'ExecutionRoleArn': model.role,
                'ModelName': model_name or model.name,
                'PrimaryContainer': {
                    'Environment': model.env,
                    'Image': model.image_uri,
                    'ModelDataUrl': model.model_data
                }
            }
        else:
            raise ValueError(
                "Expected 'model' parameter to be of type 'sagemaker.model.Model', but received type '{}'"
                .format(type(model).__name__))

        if 'S3Operations' in model_parameters:
            del model_parameters['S3Operations']

        if tags:
            model_parameters['Tags'] = tags if isinstance(
                tags, Placeholder) else tags_dict_to_kv_list(tags)

        if Field.Parameters.value in kwargs and isinstance(
                kwargs[Field.Parameters.value], dict):
            # Update model parameters with input parameters
            merge_dicts(model_parameters, kwargs[Field.Parameters.value])

        kwargs[Field.Parameters.value] = model_parameters
        """
        Example resource arn: arn:aws:states:::sagemaker:createModel
        """

        kwargs[Field.Resource.value] = get_service_integration_arn(
            SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateModel)

        super(ModelStep, self).__init__(state_id, **kwargs)
def test_merge_dicts():
    d1 = {'a': {'aa': 1, 'bb': 2, 'cc': 3}, 'b': 1}

    d2 = {'a': {'bb': {'aaa': 1, 'bbb': 2}}, 'b': 2, 'c': 3}

    merge_dicts(d1, d2)
    assert d1 == {
        'a': {
            'aa': 1,
            'bb': {
                'aaa': 1,
                'bbb': 2
            },
            'cc': 3
        },
        'b': 2,
        'c': 3
    }
    def __init__(self,
                 state_id,
                 processor,
                 job_name,
                 inputs=None,
                 outputs=None,
                 experiment_config=None,
                 container_arguments=None,
                 container_entrypoint=None,
                 kms_key_id=None,
                 wait_for_completion=True,
                 tags=None,
                 **kwargs):
        """
        Args:
            state_id (str): State name whose length **must be** less than or equal to 128 unicode characters. State names **must be** unique within the scope of the whole state machine.
            processor (sagemaker.processing.Processor): The processor for the processing step.
            job_name (str or Placeholder): Specify a processing job name, this is required for the processing job to run. We recommend to use :py:class:`~stepfunctions.inputs.ExecutionInput` placeholder collection to pass the value dynamically in each execution.
            inputs (list[:class:`~sagemaker.processing.ProcessingInput`]): Input files for
                the processing job. These must be provided as
                :class:`~sagemaker.processing.ProcessingInput` objects (default: None).
            outputs (list[:class:`~sagemaker.processing.ProcessingOutput`]): Outputs for
                the processing job. These can be specified as either path strings or
                :class:`~sagemaker.processing.ProcessingOutput` objects (default: None).
            experiment_config (dict or Placeholder, optional): Specify the experiment config for the processing. (Default: None)
            container_arguments ([str] or Placeholder): The arguments for a container used to run a processing job.
            container_entrypoint ([str] or Placeholder): The entrypoint for a container used to run a processing job.
            kms_key_id (str or Placeholder): The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
                uses to encrypt the processing job output. KmsKeyId can be an ID of a KMS key,
                ARN of a KMS key, alias of a KMS key, or alias of a KMS key.
                The KmsKeyId is applied to all outputs.
            wait_for_completion (bool, optional): Boolean value set to `True` if the Task state should wait for the processing job to complete before proceeding to the next step in the workflow. Set to `False` if the Task state should submit the processing job and proceed to the next step. (default: True)
            tags (list[dict] or Placeholder, optional): `List to tags <https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html>`_ to associate with the resource.
            parameters(dict, optional): The value of this field is merged with other arguments to become the request payload for SageMaker `CreateProcessingJob<https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html>`_. 
                You can use `parameters` to override the value provided by other arguments and specify any field's value dynamically using `Placeholders<https://aws-step-functions-data-science-sdk.readthedocs.io/en/stable/placeholders.html?highlight=placeholder#stepfunctions.inputs.Placeholder>`_.

        """
        if wait_for_completion:
            """
            Example resource arn: arn:aws:states:::sagemaker:createProcessingJob.sync
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateProcessingJob,
                IntegrationPattern.WaitForCompletion)
        else:
            """
            Example resource arn: arn:aws:states:::sagemaker:createProcessingJob
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateProcessingJob)

        if isinstance(job_name, str):
            processing_parameters = processing_config(
                processor=processor,
                inputs=inputs,
                outputs=outputs,
                container_arguments=container_arguments,
                container_entrypoint=container_entrypoint,
                kms_key_id=kms_key_id,
                job_name=job_name)
        else:
            processing_parameters = processing_config(
                processor=processor,
                inputs=inputs,
                outputs=outputs,
                container_arguments=container_arguments,
                container_entrypoint=container_entrypoint,
                kms_key_id=kms_key_id)

        if isinstance(job_name, Placeholder):
            processing_parameters['ProcessingJobName'] = job_name

        if experiment_config is not None:
            processing_parameters['ExperimentConfig'] = experiment_config

        if tags:
            processing_parameters['Tags'] = tags if isinstance(
                tags, Placeholder) else tags_dict_to_kv_list(tags)

        if 'S3Operations' in processing_parameters:
            del processing_parameters['S3Operations']

        if Field.Parameters.value in kwargs and isinstance(
                kwargs[Field.Parameters.value], dict):
            # Update processing_parameters with input parameters
            merge_dicts(processing_parameters, kwargs[Field.Parameters.value])

        kwargs[Field.Parameters.value] = processing_parameters
        super(ProcessingStep, self).__init__(state_id, **kwargs)
    def __init__(self,
                 state_id,
                 transformer,
                 job_name,
                 model_name,
                 data,
                 data_type='S3Prefix',
                 content_type=None,
                 compression_type=None,
                 split_type=None,
                 experiment_config=None,
                 wait_for_completion=True,
                 tags=None,
                 input_filter=None,
                 output_filter=None,
                 join_source=None,
                 **kwargs):
        """
        Args:
            state_id (str): State name whose length **must be** less than or equal to 128 unicode characters. State names **must be** unique within the scope of the whole state machine.
            transformer (sagemaker.transformer.Transformer): The SageMaker transformer to use in the TransformStep.
            job_name (str or Placeholder): Specify a transform job name. We recommend to use :py:class:`~stepfunctions.inputs.ExecutionInput` placeholder collection to pass the value dynamically in each execution.
            model_name (str or Placeholder): Specify a model name for the transform job to use. We recommend to use :py:class:`~stepfunctions.inputs.ExecutionInput` placeholder collection to pass the value dynamically in each execution.
            data (str or Placeholder): Input data location in S3.
            data_type (str or Placeholder): What the S3 location defines (default: 'S3Prefix').
                Valid values:

                * 'S3Prefix' - the S3 URI defines a key name prefix. All objects with this prefix will
                    be used as inputs for the transform job.
                * 'ManifestFile' - the S3 URI points to a single manifest file listing each S3 object
                    to use as an input for the transform job.
            content_type (str or Placeholder): MIME type of the input data (default: None).
            compression_type (str or Placeholder): Compression type of the input data, if compressed (default: None). Valid values: 'Gzip', None.
            split_type (str or Placeholder): The record delimiter for the input object (default: 'None'). Valid values: 'None', 'Line', 'RecordIO', and 'TFRecord'.
            experiment_config (dict or Placeholder, optional): Specify the experiment config for the transform. (Default: None)
            wait_for_completion(bool, optional): Boolean value set to `True` if the Task state should wait for the transform job to complete before proceeding to the next step in the workflow. Set to `False` if the Task state should submit the transform job and proceed to the next step. (default: True)
            tags (list[dict] or Placeholder, optional): `List to tags <https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html>`_ to associate with the resource.
            input_filter (str or Placeholder): A JSONPath to select a portion of the input to pass to the algorithm container for inference. If you omit the field, it gets the value ‘$’, representing the entire input. For CSV data, each row is taken as a JSON array, so only index-based JSONPaths can be applied, e.g. $[0], $[1:]. CSV data should follow the RFC format. See Supported JSONPath Operators for a table of supported JSONPath operators. For more information, see the SageMaker API documentation for CreateTransformJob. Some examples: “$[1:]”, “$.features” (default: None).
            output_filter (str or Placeholder): A JSONPath to select a portion of the joined/original output to return as the output. For more information, see the SageMaker API documentation for CreateTransformJob. Some examples: “$[1:]”, “$.prediction” (default: None).
            join_source (str or Placeholder): The source of data to be joined to the transform output. It can be set to ‘Input’ meaning the entire input record will be joined to the inference result. You can use OutputFilter to select the useful portion before uploading to S3. (default: None). Valid values: Input, None.
            parameters(dict, optional): The value of this field is merged with other arguments to become the request payload for SageMaker `CreateTransformJob<https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html>`_.
                You can use `parameters` to override the value provided by other arguments and specify any field's value dynamically using `Placeholders<https://aws-step-functions-data-science-sdk.readthedocs.io/en/stable/placeholders.html?highlight=placeholder#stepfunctions.inputs.Placeholder>`_.

        """
        if wait_for_completion:
            """
            Example resource arn: arn:aws:states:::sagemaker:createTransformJob.sync
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateTransformJob,
                IntegrationPattern.WaitForCompletion)
        else:
            """
            Example resource arn: arn:aws:states:::sagemaker:createTransformJob
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateTransformJob)

        if isinstance(job_name, str):
            transform_parameters = transform_config(
                transformer=transformer,
                data=data,
                data_type=data_type,
                content_type=content_type,
                compression_type=compression_type,
                split_type=split_type,
                job_name=job_name,
                input_filter=input_filter,
                output_filter=output_filter,
                join_source=join_source)
        else:
            transform_parameters = transform_config(
                transformer=transformer,
                data=data,
                data_type=data_type,
                content_type=content_type,
                compression_type=compression_type,
                split_type=split_type,
                input_filter=input_filter,
                output_filter=output_filter,
                join_source=join_source)

        if isinstance(job_name, Placeholder):
            transform_parameters['TransformJobName'] = job_name

        transform_parameters['ModelName'] = model_name

        if experiment_config is not None:
            transform_parameters['ExperimentConfig'] = experiment_config

        if tags:
            transform_parameters['Tags'] = tags if isinstance(
                tags, Placeholder) else tags_dict_to_kv_list(tags)

        if Field.Parameters.value in kwargs and isinstance(
                kwargs[Field.Parameters.value], dict):
            # Update transform_parameters with input parameters
            merge_dicts(transform_parameters, kwargs[Field.Parameters.value])

        kwargs[Field.Parameters.value] = transform_parameters
        super(TransformStep, self).__init__(state_id, **kwargs)
    def __init__(self,
                 state_id,
                 tuner,
                 job_name,
                 data,
                 wait_for_completion=True,
                 tags=None,
                 **kwargs):
        """
        Args:
            state_id (str): State name whose length **must be** less than or equal to 128 unicode characters. State names **must be** unique within the scope of the whole state machine.
            tuner (sagemaker.tuner.HyperparameterTuner): The tuner to use in the TuningStep.
            job_name (str or Placeholder): Specify a tuning job name.  We recommend to use :py:class:`~stepfunctions.inputs.ExecutionInput` placeholder collection to pass the value dynamically in each execution.
            data: Information about the training data. Please refer to the ``fit()`` method of the associated estimator in the tuner, as this can take any of the following forms:

                * (str) - The S3 location where training data is saved.
                * (dict[str, str] or dict[str, sagemaker.inputs.TrainingInput]) - If using multiple
                    channels for training data, you can specify a dict mapping channel names to
                    strings or :func:`~sagemaker.inputs.TrainingInput` objects.
                * (sagemaker.inputs.TrainingInput) - Channel configuration for S3 data sources that can
                    provide additional information about the training dataset. See
                    :func:`sagemaker.inputs.TrainingInput` for full details.
                * (sagemaker.amazon.amazon_estimator.RecordSet) - A collection of
                    Amazon :class:`Record` objects serialized and stored in S3.
                    For use with an estimator for an Amazon algorithm.
                * (list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of
                    :class:`sagemaker.amazon.amazon_estimator.RecordSet` objects,
                    where each instance is a different channel of training data.
            wait_for_completion(bool, optional): Boolean value set to `True` if the Task state should wait for the tuning job to complete before proceeding to the next step in the workflow. Set to `False` if the Task state should submit the tuning job and proceed to the next step. (default: True)
            tags (list[dict] or Placeholder, optional): `List of tags <https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html>`_ to associate with the resource.
            parameters(dict, optional): The value of this field is merged with other arguments to become the request payload for SageMaker `CreateHyperParameterTuningJob <https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateHyperParameterTuningJob.html>`_.
                You can use `parameters` to override the value provided by other arguments and specify any field's value dynamically using `Placeholders <https://aws-step-functions-data-science-sdk.readthedocs.io/en/stable/placeholders.html?highlight=placeholder#stepfunctions.inputs.Placeholder>`_.

        """
        if wait_for_completion:
            """
            Example resource arn: arn:aws:states:::sagemaker:createHyperParameterTuningJob.sync
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME,
                SageMakerApi.CreateHyperParameterTuningJob,
                IntegrationPattern.WaitForCompletion)
        else:
            """
            Example resource arn: arn:aws:states:::sagemaker:createHyperParameterTuningJob
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME,
                SageMakerApi.CreateHyperParameterTuningJob)

        tuning_parameters = tuning_config(tuner=tuner,
                                          inputs=data,
                                          job_name=job_name).copy()

        if job_name is not None:
            tuning_parameters['HyperParameterTuningJobName'] = job_name

        if 'S3Operations' in tuning_parameters:
            del tuning_parameters['S3Operations']

        if tags:
            tuning_parameters['Tags'] = tags if isinstance(
                tags, Placeholder) else tags_dict_to_kv_list(tags)

        if Field.Parameters.value in kwargs and isinstance(
                kwargs[Field.Parameters.value], dict):
            # Update tuning parameters with input parameters
            merge_dicts(tuning_parameters, kwargs[Field.Parameters.value])

        kwargs[Field.Parameters.value] = tuning_parameters
        super(TuningStep, self).__init__(state_id, **kwargs)
    def __init__(self,
                 state_id,
                 estimator,
                 job_name,
                 data=None,
                 hyperparameters=None,
                 mini_batch_size=None,
                 experiment_config=None,
                 wait_for_completion=True,
                 tags=None,
                 output_data_config_path=None,
                 **kwargs):
        """
        Args:
            state_id (str): State name whose length **must be** less than or equal to 128 unicode characters. State names **must be** unique within the scope of the whole state machine.
            estimator (sagemaker.estimator.EstimatorBase): The estimator for the training step. Can be a `BYO estimator, Framework estimator <https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html>`_ or `Amazon built-in algorithm estimator <https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html>`_.
            job_name (str or Placeholder): Specify a training job name, this is required for the training job to run. We recommend to use :py:class:`~stepfunctions.inputs.ExecutionInput` placeholder collection to pass the value dynamically in each execution.
            data: Information about the training data. Please refer to the ``fit()`` method of the associated estimator, as this can take any of the following forms:

                * (str or Placeholder) - The S3 location where training data is saved.
                * (dict[str, str] or dict[str, sagemaker.inputs.TrainingInput]) - If using multiple
                    channels for training data, you can specify a dict mapping channel names to
                    strings or :func:`~sagemaker.inputs.TrainingInput` objects.
                * (sagemaker.inputs.TrainingInput) - Channel configuration for S3 data sources that can
                    provide additional information about the training dataset. See
                    :func:`sagemaker.inputs.TrainingInput` for full details.
                * (sagemaker.amazon.amazon_estimator.RecordSet) - A collection of
                    Amazon :class:`Record` objects serialized and stored in S3.
                    For use with an estimator for an Amazon algorithm.
                * (list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of
                    :class:`sagemaker.amazon.amazon_estimator.RecordSet` objects,
                    where each instance is a different channel of training data.
            hyperparameters: Parameters used for training.

                * (dict, optional) - Hyperparameters supplied will be merged with the Hyperparameters specified in the estimator.
                    If there are duplicate entries, the value provided through this property will be used. (Default: Hyperparameters specified in the estimator.)
                * (Placeholder, optional) - The TrainingStep will use the hyperparameters specified by the Placeholder's value instead of the hyperparameters specified in the estimator.
            mini_batch_size (int): Specify this argument only when estimator is a built-in estimator of an Amazon algorithm. For other estimators, batch size should be specified in the estimator.
            experiment_config (dict or Placeholder, optional): Specify the experiment config for the training. (Default: None)
            wait_for_completion (bool, optional): Boolean value set to `True` if the Task state should wait for the training job to complete before proceeding to the next step in the workflow. Set to `False` if the Task state should submit the training job and proceed to the next step. (default: True)
            tags (list[dict] or Placeholder, optional): `List of tags <https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html>`_ to associate with the resource.
            output_data_config_path (str or Placeholder, optional): S3 location for saving the training result (model
                artifacts and output files). If specified, it overrides the `output_path` property of `estimator`.
            parameters(dict, optional): The value of this field is merged with other arguments to become the request payload for SageMaker `CreateTrainingJob <https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html>`_. (Default: None)
                You can use `parameters` to override the value provided by other arguments and specify any field's value dynamically using `Placeholders <https://aws-step-functions-data-science-sdk.readthedocs.io/en/stable/placeholders.html?highlight=placeholder#stepfunctions.inputs.Placeholder>`_.
        """
        self.estimator = estimator
        self.job_name = job_name

        if wait_for_completion:
            """
            Example resource arn: arn:aws:states:::sagemaker:createTrainingJob.sync
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateTrainingJob,
                IntegrationPattern.WaitForCompletion)
        else:
            """
            Example resource arn: arn:aws:states:::sagemaker:createTrainingJob
            """

            kwargs[Field.Resource.value] = get_service_integration_arn(
                SAGEMAKER_SERVICE_NAME, SageMakerApi.CreateTrainingJob)
        # Convert `data` Placeholder to a JSONPath string because sagemaker.workflow.airflow.training_config does not
        # accept Placeholder in the `input` argument. We will suffix the 'S3Uri' key in `parameters` with ".$" later.
        is_data_placeholder = isinstance(data, Placeholder)
        if is_data_placeholder:
            data = data.to_jsonpath()

        if isinstance(job_name, str):
            training_parameters = training_config(
                estimator=estimator,
                inputs=data,
                job_name=job_name,
                mini_batch_size=mini_batch_size)
        else:
            training_parameters = training_config(
                estimator=estimator,
                inputs=data,
                mini_batch_size=mini_batch_size)

        if estimator.debugger_hook_config != None and estimator.debugger_hook_config is not False:
            training_parameters[
                'DebugHookConfig'] = estimator.debugger_hook_config._to_request_dict(
                )

        if estimator.rules != None:
            training_parameters['DebugRuleConfigurations'] = [
                rule.to_debugger_rule_config_dict() for rule in estimator.rules
            ]

        if isinstance(job_name, Placeholder):
            training_parameters['TrainingJobName'] = job_name

        if output_data_config_path is not None:
            training_parameters['OutputDataConfig'][
                'S3OutputPath'] = output_data_config_path

        if data is not None and is_data_placeholder:
            # Replace the 'S3Uri' key with one that supports JSONpath value.
            # Support for uri str only: The list will only contain 1 element
            data_uri = training_parameters['InputDataConfig'][0]['DataSource'][
                'S3DataSource'].pop('S3Uri', None)
            training_parameters['InputDataConfig'][0]['DataSource'][
                'S3DataSource']['S3Uri.$'] = data_uri

        if hyperparameters is not None:
            if not isinstance(hyperparameters, Placeholder):
                if estimator.hyperparameters() is not None:
                    hyperparameters = self.__merge_hyperparameters(
                        hyperparameters, estimator.hyperparameters())
            training_parameters['HyperParameters'] = hyperparameters

        if experiment_config is not None:
            training_parameters['ExperimentConfig'] = experiment_config

        if 'S3Operations' in training_parameters:
            del training_parameters['S3Operations']

        if tags:
            training_parameters['Tags'] = tags if isinstance(
                tags, Placeholder) else tags_dict_to_kv_list(tags)

        if Field.Parameters.value in kwargs and isinstance(
                kwargs[Field.Parameters.value], dict):
            # Update training parameters with input parameters
            merge_dicts(training_parameters, kwargs[Field.Parameters.value])

        kwargs[Field.Parameters.value] = training_parameters
        super(TrainingStep, self).__init__(state_id, **kwargs)