Esempio n. 1
0
    def test_compute_criteria_computes_criteria_correctly(self):
        res = OptimizationResults(self.lpost, self.opt, neg=self.neg)

        test_aic = 169440.83719024697
        test_bic = 169245.62163088709
        test_deviance = 337950.6823459795

        assert np.isclose(res.aic, test_aic, atol=0.1, rtol=0.1)
        assert np.isclose(res.bic, test_bic, atol=0.1, rtol=0.1)
        assert np.isclose(res.deviance, test_deviance, atol=0.1, rtol=0.1)
Esempio n. 2
0
    def test_object_has_right_attributes(self):
        res = OptimizationResults(self.lpost, self.opt, neg=self.neg)

        assert hasattr(res, "p_opt")
        assert hasattr(res, "result")
        assert hasattr(res, "deviance")
        assert hasattr(res, "aic")
        assert hasattr(res, "bic")
        assert hasattr(res, "model")
        assert isinstance(res.model, models.Const1D)
    def test_compute_criteria_works_correctly(self):
        res = OptimizationResults(self.lpost, self.opt, neg=self.neg)

        test_aic = res.result + 2.0 * res.p_opt.shape[0]
        test_bic = res.result + res.p_opt.shape[0] * \
                                np.log(self.lpost.x.shape[0])
        test_deviance = -2 * self.lpost.loglikelihood(res.p_opt, neg=False)

        assert np.isclose(res.aic, test_aic, atol=0.1, rtol=0.1)
        assert np.isclose(res.bic, test_bic, atol=0.1, rtol=0.1)
        assert np.isclose(res.deviance, test_deviance, atol=0.1, rtol=0.1)
Esempio n. 4
0
    def test_object_initializes_correctly(self):
        res = OptimizationResults(self.lpost, self.opt, neg=self.neg)
        assert hasattr(res, "p_opt")
        assert hasattr(res, "result")
        assert hasattr(res, "deviance")
        assert hasattr(res, "aic")
        assert hasattr(res, "bic")
        assert hasattr(res, "model")
        assert isinstance(res.model, models.Const1D)
        assert res.p_opt == self.opt.x, "res.p_opt must be the same as opt.x!"
        assert np.isclose(res.p_opt[0], 2.0, atol=0.1, rtol=0.1)
        assert res.model == self.lpost.model
        assert res.result == self.opt.fun

        mean_model = np.ones_like(self.lpost.x) * self.opt.x[0]
        assert np.allclose(res.mfit, mean_model), "res.model should be exactly " \
                                     "the model for the data."
Esempio n. 5
0
    def test_merit_calculated_correctly(self):
        res = OptimizationResults(self.lpost, self.opt, neg=self.neg)

        test_merit = np.sum(((self.ps.power - 2.0)/2.0)**2.)
        assert np.isclose(res.merit, test_merit, rtol=0.2)
Esempio n. 6
0
    def test_merit_calculated_correctly(self):
        res = OptimizationResults(self.lpost, self.opt, neg=self.neg)

        test_merit = 98770.654981073574
        assert np.isclose(res.merit, test_merit, atol=0.1, rtol=0.1)
Esempio n. 7
0
 def test_compute_model_works_correctly(self):
     res = OptimizationResults(self.lpost, self.opt, neg=self.neg)
     mean_model = np.ones_like(self.lpost.x) * self.opt.x[0]
     assert np.all(
         res.mfit == mean_model), "res.model should be exactly " \
                                  "the model for the data."
Esempio n. 8
0
 def test_result_is_same_as_in_opt(self):
     res = OptimizationResults(self.lpost, self.opt, neg=self.neg)
     assert res.result == self.opt.fun
Esempio n. 9
0
 def test_model_is_same_as_in_lpost(self):
     res = OptimizationResults(self.lpost, self.opt, neg=self.neg)
     assert res.model == self.lpost.model
Esempio n. 10
0
 def test_p_opt_is_correct(self):
     res = OptimizationResults(self.lpost, self.opt, neg=self.neg)
     assert res.p_opt == self.opt.x, "res.p_opt must be the same as opt.x!"
     assert np.isclose(res.p_opt[0], 2.0, atol=0.1, rtol=0.1)
Esempio n. 11
0
 def test_object_initializes(self):
     res = OptimizationResults(self.lpost, self.opt, neg=self.neg)