Esempio n. 1
0
from ..case_data import CaseData

bb1 = stk.BuildingBlock('BrCCBr', [stk.BromoFactory()])
bb2 = stk.BuildingBlock('BrCC(CBr)CBr', [stk.BromoFactory()])
graph1 = stk.cage.FourPlusSix((bb1, bb2))

bb3 = stk.BuildingBlock('BrCNCBr', [stk.BromoFactory()])
bb4 = stk.BuildingBlock('BrCC(CNCBr)CBr', [stk.BromoFactory()])
graph2 = stk.cage.EightPlusTwelve((bb3, bb4))


@pytest.fixture(
    scope='session',
    params=(lambda: CaseData(
        crosser=stk.RandomCrosser(crossers=(stk.GeneticRecombination(get_gene=(
            stk.BuildingBlock.get_num_functional_groups), ), ), ),
        records=(
            stk.MoleculeRecord(graph1),
            stk.MoleculeRecord(graph2),
        ),
        crossover_records=(stk.CrossoverRecord(
            molecule_record=stk.MoleculeRecord(topology_graph=graph1, ),
            crosser_name='GeneticRecombination',
        ),
                           stk.CrossoverRecord(
                               molecule_record=stk.MoleculeRecord(
                                   topology_graph=graph1.with_building_blocks(
                                       building_block_map={bb1: bb3}, ), ),
                               crosser_name='GeneticRecombination',
                           ),
                           stk.CrossoverRecord(
Esempio n. 2
0
# Selector for selecting molecules for mutation.
# #####################################################################

mutation_selector = stk.Roulette(
    num_batches=5,
    duplicate_mols=False,
    batch_size=1,
    random_seed=random_seed,
)

# #####################################################################
# Crosser.
# #####################################################################

crosser = stk.GeneticRecombination(
    key=lambda mol: mol.func_groups[0].fg_type.name,
    random_seed=random_seed,
)

# #####################################################################
# Mutator.
# #####################################################################

mutator = stk.Random(
    stk.RandomBuildingBlock(
        amine_building_blocks,
        key=lambda mol: mol.func_groups[0].fg_type.name == "primary_amine",
        duplicate_building_blocks=False,
        random_seed=random_seed,
    ),
    stk.SimilarBuildingBlock(
        amine_building_blocks,
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--mongodb_uri',
                        help='The MongoDB URI for the database to connect to.',
                        default='mongodb://localhost:27017/')
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO)

    # Use a random seed to get reproducible results.
    random_seed = 4
    generator = np.random.RandomState(random_seed)

    logger.info('Making building blocks.')

    # Load the building block databases.
    fluoros = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'fluoros.txt',
            functional_group_factory=stk.FluoroFactory(),
        ))
    bromos = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'bromos.txt',
            functional_group_factory=stk.BromoFactory(),
        ))

    initial_population = tuple(get_initial_population(fluoros, bromos))
    # Write the initial population.
    for i, record in enumerate(initial_population):
        write(record.get_molecule(), f'initial_{i}.mol')

    client = pymongo.MongoClient(args.mongodb_uri)
    db = stk.ConstructedMoleculeMongoDb(client)
    fitness_db = stk.ValueMongoDb(client, 'fitness_values')

    # Plot selections.
    generation_selector = stk.Best(
        num_batches=25,
        duplicate_molecules=False,
    )
    stk.SelectionPlotter('generation_selection', generation_selector)

    mutation_selector = stk.Roulette(
        num_batches=5,
        random_seed=generator.randint(0, 1000),
    )
    stk.SelectionPlotter('mutation_selection', mutation_selector)

    crossover_selector = stk.Roulette(
        num_batches=3,
        batch_size=2,
        random_seed=generator.randint(0, 1000),
    )
    stk.SelectionPlotter('crossover_selection', crossover_selector)

    fitness_calculator = stk.PropertyVector(
        property_functions=(
            get_num_rotatable_bonds,
            get_complexity,
            get_num_bad_rings,
        ),
        input_database=fitness_db,
        output_database=fitness_db,
    )

    fitness_normalizer = stk.NormalizerSequence(
        fitness_normalizers=(
            # Prevent division by 0 error in DivideByMean, by ensuring
            # a value of each property to be at least 1.
            stk.Add((1, 1, 1)),
            stk.DivideByMean(),
            # Obviously, because all coefficients are equal, the
            # Multiply normalizer does not need to be here. However,
            # it's here to show that you can easily change the relative
            # importance of each component of the fitness value, by
            # changing the values of the coefficients.
            stk.Multiply((1, 1, 1)),
            stk.Sum(),
            stk.Power(-1),
        ), )

    ea = stk.EvolutionaryAlgorithm(
        num_processes=1,
        initial_population=initial_population,
        fitness_calculator=fitness_calculator,
        mutator=stk.RandomMutator(
            mutators=(
                stk.RandomBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.RandomBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
            ),
            random_seed=generator.randint(0, 1000),
        ),
        crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ),
        generation_selector=generation_selector,
        mutation_selector=mutation_selector,
        crossover_selector=crossover_selector,
        fitness_normalizer=fitness_normalizer,
    )

    logger.info('Starting EA.')

    generations = []
    for generation in ea.get_generations(50):
        for record in generation.get_molecule_records():
            db.put(record.get_molecule())
        generations.append(generation)

    # Write the final population.
    for i, record in enumerate(generation.get_molecule_records()):
        write(record.get_molecule(), f'final_{i}.mol')

    logger.info('Making fitness plot.')

    # Normalize the fitness values across the entire EA before
    # plotting the fitness values.
    generations = tuple(
        normalize_generations(
            fitness_calculator=fitness_calculator,
            fitness_normalizer=fitness_normalizer,
            generations=generations,
        ))

    fitness_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: record.get_fitness_value(),
        y_label='Fitness Value',
    )
    fitness_progress.write('fitness_progress.png')
    fitness_progress.get_plot_data().to_csv('fitness_progress.csv')

    logger.info('Making rotatable bonds plot.')

    rotatable_bonds_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: get_num_rotatable_bonds(record.
                                                            get_molecule()),
        y_label='Number of Rotatable Bonds',
    )
    rotatable_bonds_progress.write('rotatable_bonds_progress.png')
Esempio n. 4
0

bb1 = stk.BuildingBlock('BrCCBr', [stk.BromoFactory()])
bb2 = stk.BuildingBlock('BrCC(CBr)CBr', [stk.BromoFactory()])
graph1 = stk.cage.FourPlusSix((bb1, bb2))

bb3 = stk.BuildingBlock('BrCNCBr', [stk.BromoFactory()])
bb4 = stk.BuildingBlock('BrCC(CNCBr)CBr', [stk.BromoFactory()])
graph2 = stk.cage.EightPlusTwelve((bb3, bb4))


@pytest.fixture(
    params=(
        CaseData(
            crosser=stk.GeneticRecombination(
                get_gene=stk.BuildingBlock.get_num_functional_groups,
            ),
            records=(
                stk.MoleculeRecord(graph1),
                stk.MoleculeRecord(graph2),
            ),
            crossover_records=(
                stk.CrossoverRecord(
                    molecule_record=stk.MoleculeRecord(
                        topology_graph=graph1,
                    ),
                    crosser_name='GeneticRecombination',
                ),
                stk.CrossoverRecord(
                    molecule_record=stk.MoleculeRecord(
                        topology_graph=graph1.with_building_blocks(
Esempio n. 5
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--mongodb_uri',
        help='The MongoDB URI for the database to connect to.',
        default='mongodb://localhost:27017/',
    )
    args = parser.parse_args()

    logging.basicConfig(level=logging.INFO)

    # Use a random seed to get reproducible results.
    random_seed = 4
    generator = np.random.RandomState(random_seed)

    logger.info('Making building blocks.')

    # Load the building block databases.
    fluoros = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'fluoros.txt',
            functional_group_factory=stk.FluoroFactory(),
        ))
    bromos = tuple(
        get_building_blocks(
            path=pathlib.Path(__file__).parent / 'bromos.txt',
            functional_group_factory=stk.BromoFactory(),
        ))

    initial_population = tuple(get_initial_population(fluoros, bromos))
    # Write the initial population.
    for i, record in enumerate(initial_population):
        write(record.get_molecule(), f'initial_{i}.mol')

    client = pymongo.MongoClient(args.mongodb_uri)
    db = stk.ConstructedMoleculeMongoDb(client)
    ea = stk.EvolutionaryAlgorithm(
        initial_population=initial_population,
        fitness_calculator=stk.FitnessFunction(get_fitness_value),
        mutator=stk.RandomMutator(
            mutators=(
                stk.RandomBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=fluoros,
                    is_replaceable=is_fluoro,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.RandomBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
                stk.SimilarBuildingBlock(
                    building_blocks=bromos,
                    is_replaceable=is_bromo,
                    random_seed=generator.randint(0, 1000),
                ),
            ),
            random_seed=generator.randint(0, 1000),
        ),
        crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ),
        generation_selector=stk.Best(
            num_batches=25,
            duplicate_molecules=False,
        ),
        mutation_selector=stk.Roulette(
            num_batches=5,
            random_seed=generator.randint(0, 1000),
        ),
        crossover_selector=stk.Roulette(
            num_batches=3,
            batch_size=2,
            random_seed=generator.randint(0, 1000),
        ),
    )

    logger.info('Starting EA.')

    generations = []
    for generation in ea.get_generations(50):
        for record in generation.get_molecule_records():
            db.put(record.get_molecule())
        generations.append(generation)

    # Write the final population.
    for i, record in enumerate(generation.get_molecule_records()):
        write(record.get_molecule(), f'final_{i}.mol')

    logger.info('Making fitness plot.')

    fitness_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=lambda record: record.get_fitness_value(),
        y_label='Fitness Value',
    )
    fitness_progress.write('fitness_progress.png')

    logger.info('Making rotatable bonds plot.')

    rotatable_bonds_progress = stk.ProgressPlotter(
        generations=generations,
        get_property=get_num_rotatable_bonds,
        y_label='Number of Rotatable Bonds',
    )
    rotatable_bonds_progress.write('rotatable_bonds_progress.png')