Esempio n. 1
0
def stock_stats(data_frame: pd.DataFrame):
    stock = StockDataFrame.retype(data_frame)

    data = {
        # volume delta against previous day
        'volume_delta': stock.get('volume_delta'),

        # open delta against next 2 day
        'open_2_d': stock.get('open_2_d'),

        # open price change (in percent)) between today and the day before yesterday
        # 'r' stands for rate.
        'open_-2_r': stock.get('open_-2_r'),

        # CR indicator, including 5, 10, 20 days moving average
        'cr': stock.get('cr'),
        'cr-ma1': stock.get('cr-ma1'),
        'cr-ma2': stock.get('cr-ma2'),
        'cr-ma3': stock.get('cr-ma3'),

        # KDJ, default to 9 days
        'kdjk': stock.get('kdjk'),
        'kdjd': stock.get('kdjd'),
        'kdjj': stock.get('kdjj'),

        # three days KDJK cross up 3 days KDJD
        # 'kdj_3_xu_kdjd_3': stock.get('kdj_3_xu_kdjd_3'),

        # 2 days simple moving average on open price
        'open_2_sma': stock.get('open_2_sma'),

        # MACD
        'macd': stock.get('macd'),
        # MACD signal line
        'macds': stock.get('macds'),
        # MACD histogram
        'macdh': stock.get('macdh'),

        # bolling, including upper band and lower band
        'boll': stock.get('boll'),
        'boll_ub': stock.get('boll_ub'),
        'boll_lb': stock.get('boll_lb'),

        # close price less than 10.0 in 5 days count
        'close_10.0_le_5_c': stock.get('close_10.0_le_5_c'),

        # CR MA2 cross up CR MA1 in 20 days count
        # 'cr-ma2_xu_cr-ma1_20_c': stock.get('cr-ma2_xu_cr-ma1_20_c'),

        # count forward(future)) where close price is larger than 10
        'close_10.0_ge_5_fc': stock.get('close_10.0_ge_5_fc'),

        # 6 days RSI
        'rsi_6': stock.get('rsi_6'),
        # 12 days RSI
        'rsi_12': stock.get('rsi_12'),

        # 10 days WR
        'wr_10': stock.get('wr_10'),
        # 6 days WR
        'wr_6': stock.get('wr_6'),

        # CCI, default to 14 days
        'cci': stock.get('cci'),
        # 20 days CCI
        'cci_20': stock.get('cci_20'),

        # TR (true range))
        'tr': stock.get('tr'),
        # ATR (Average True Range))
        'atr': stock.get('atr'),

        # DMA, difference of 10 and 50 moving average
        'dma': stock.get('dma'),

        # DMI
        # +DI, default to 14 days
        'pdi': stock.get('pdi'),
        # -DI, default to 14 days
        'mdi': stock.get('mdi'),
        # DX, default to 14 days of +DI and -DI
        'dx': stock.get('dx'),
        # ADX, 6 days SMA of DX, same as '': stock.get('dx_6_ema'))
        'adx': stock.get('adx'),
        # ADXR, 6 days SMA of ADX, same as '': stock.get('adx_6_ema'))
        'adxr': stock.get('adxr'),

        # TRIX, default to 12 days
        'trix': stock.get('trix'),
        # TRIX based on the close price for a window of 3
        'close_3_trix': stock.get('close_3_trix'),
        # MATRIX is the simple moving average of TRIX
        'trix_9_sma': stock.get('trix_9_sma'),
        # TEMA, another implementation for triple ema
        'tema': stock.get('tema'),
        # TEMA based on the close price for a window of 2
        'close_2_tema': stock.get('close_2_tema'),

        # VR, default to 26 days
        'vr': stock.get('vr'),
        # MAVR is the simple moving average of VR
        'vr_6_sma': stock.get('vr_6_sma')
    }
    stats = pd.DataFrame(data)

    return stats
Esempio n. 2
0
 good_tickers.append(ticker)
 # Rename some columns
 stock.rename(columns={'Close': 'NonAdjClose', 'Adj Close': 'Close'})
 # Plot the closing prices
 stock['Close'].plot(grid=True)
 # Show the plot
 print("Plot the closing prices ", ticker)
 plt.show()
 # Add a column 'diff' to 'stock'
 stock['Diff'] = stock['Close'].shift(-1) - stock['Close']
 print(ticker)
 #print("Today close: ", stock['NextClose'])
 #print("Output Diff of today close and tomorrow close: ", stock['Diff'])
 ##### RSI Routine
 # Recast pandas df to stockstats df
 stockstats_df = sdf.retype(stock)
 # Calculate RSI for 14 day lookback window and add to df
 stock['RSI'] = stockstats_df['rsi_14']
 #print("RSI: ", stock['RSI'])
 ##### SMA - using fibonacci periods
 stock['SMA13'] = stockstats_df['open_13_sma']
 stock['SMA21'] = stockstats_df['open_21_sma']
 stock['SMA55'] = stockstats_df['open_55_sma']
 stock['SMA89'] = stockstats_df['open_89_sma']
 stock['SMA144'] = stockstats_df['open_144_sma']
 stock['SMA233'] = stockstats_df['open_233_sma']
 #print("SMA13: ", stock['SMA13'])
 #print("SMA21: ", stock['SMA21'])
 #print("SMA55: ", stock['SMA55'])
 #print("SMA89: ", stock['SMA89'])
 #print("SMA144: ", stock['SMA144'])
Esempio n. 3
0
    def buy_alg(self, stats_time=None):

        if stats_time is None:
            stats_time = "-60d"
        backtest_time = "-14d"

        self.db.last_date = self.db.get_date_format(backtest_time)
        spy = self.db.load_data(table_name=TableName.DAY_FS,
                                symbols=["SPY"],
                                time_from=stats_time)
        # spy = sdf.retype(spy)
        # spy = FinI.add_indicators(spy)

        stocks_day = self.db.load_data(table_name=TableName.DAY_FS,
                                       time_from=stats_time)
        stocks_day["sym"] = stocks_day["sym"].astype('category')

        stocks_15 = self.db.load_data(table_name=TableName.MIN15,
                                      time_from=backtest_time)
        stocks_15["sym"] = stocks_15["sym"].astype('category')
        spy_15 = stocks_15[stocks_15["sym"] == "SPY"]

        # logging.info(spy)
        symbols = self.db.get_symbols()

        # for testing performance reason here are only few stocks
        symbols = [
            "INTC", "BYND", "ZM", "NKE", "HIMX", "JKS", "ENPH", "DUK", "GE",
            "DIS", "LEVI", "NVAX", "SLCA", "GPS"
        ]
        # iterate over days in market
        spy2 = spy.tail(20)

        # retype to stocks dataframe
        if not isinstance(stocks_day, sdf):
            stocks_day = sdf.retype(stocks_day)

        for index, spy_row_day in spy2.iterrows():
            st.write("spy: " + str(spy_row_day))
            st.write("DATE" + str(index))

            for symbol in symbols:
                # load stocks for stats
                stocks_day_sym = stocks_day[stocks_day["sym"] == symbol]
                # stocks_day_sym = FinI.add_indicators(stocks_day_sym)
                # stocks_day_sym = FinI.add_sma(9, stocks_day_sym)
                # stocks_day_sym = FinI.add_sma(50, stocks_day_sym)
                # stocks_day_sym.get('boll')
                # stocks_day_sym.get('volume_delta')
                # stocks_day_sym.get('macd')
                # stocks_day_sym.get('kdjk')
                # stocks_day_sym.get('open_-2_r')
                # logging.info(" -------------------------------------------------  --------------")
                # logging.info(stocks_day_sym)
                # stocks_day_sym = FinI.add_day_types(stocks_day_sym)
                # stocks_day_sym = FinI.add_levels(stocks_day_sym)
                stocks_15_sym = stocks_15[stocks_15["sym"] == symbol]
                stock_rows15 = stocks_15_sym.loc[
                    stocks_15_sym.index <= pytz.utc.localize(index)]
                # logging.info(stock_rows15.iloc[-1].sym + " | " + str(stock_rows15.index[-1]))

                if len(stock_rows15) > 1:
                    self.back_buy_best_stock(stocks_day_sym, index)
                    # st.write((stock_rows15.iloc[-1].sym + " | " + str(stock_rows15.index[-1])))
                    logging.info(stock_rows15.iloc[-1].sym + " | " +
                                 str(stock_rows15.index[-1]))
                    self.buy_sell(stocks_day_sym, stock_rows15, spy, spy_15,
                                  spy_row_day)

            st.write(self.dft)
Esempio n. 4
0
def process_one_day(filename):
    df_ticker = pd.DataFrame.from_csv(filename, header=None)
    df_ticker.drop([1, 3, 4, 5], inplace=True, axis=1)

    df_ticker.columns = [['close']]
    sdf_ticker = Sdf.retype(df_ticker)
    #    print(sdf_ticker.head())
    print('Number of rows >', sdf_ticker.shape[0])

    # remove duplicate entries
    sdf_ticker = sdf_ticker[sdf_ticker.shift(1) != sdf_ticker]

    sdf_ticker.dropna(inplace=True)
    print('Number of rows after concat>', sdf_ticker.shape[0])
    sdf_ticker['macd']
    #    sdf_ticker.drop(['close_-1_s','close_-1_d','rs_14'], inplace=True, axis=1)
    #    sdf_ticker.drop(['close_12_ema','close_26_ema','macds','macdh'], inplace=True, axis=1)
    #    print(sdf_ticker.head(20))

    for i in range(1, 51):
        sdf_ticker['{}'.format(
            i)] = sdf_ticker['macd'] - sdf_ticker['macd'].shift(i)

    sdf_ticker.dropna(inplace=True)
    #    sdf_ticker=sdf_ticker.astype(int)

    # Create labels
    for i in range(1, hm_days + 1):
        sdf_ticker['{}d'.format(i)] = (sdf_ticker['close'].shift(-i) -
                                       sdf_ticker['close'])

    sdf_ticker['label'] = list(
        map(buy_sell_hold, sdf_ticker['1d'], sdf_ticker['2d'],
            sdf_ticker['3d'], sdf_ticker['4d'], sdf_ticker['5d'],
            sdf_ticker['6d'], sdf_ticker['7d'], sdf_ticker['8d'],
            sdf_ticker['9d'], sdf_ticker['10d'], sdf_ticker['11d'],
            sdf_ticker['12d'], sdf_ticker['13d'], sdf_ticker['14d'],
            sdf_ticker['15d'], sdf_ticker['16d'], sdf_ticker['17d'],
            sdf_ticker['18d'], sdf_ticker['19d'], sdf_ticker['20d'],
            sdf_ticker['21d'], sdf_ticker['22d'], sdf_ticker['23d'],
            sdf_ticker['24d'], sdf_ticker['25d'], sdf_ticker['26d'],
            sdf_ticker['27d'], sdf_ticker['28d'], sdf_ticker['29d'],
            sdf_ticker['30d'], sdf_ticker['31d'], sdf_ticker['32d'],
            sdf_ticker['33d'], sdf_ticker['34d'], sdf_ticker['35d'],
            sdf_ticker['36d'], sdf_ticker['37d'], sdf_ticker['38d'],
            sdf_ticker['39d'], sdf_ticker['40d'], sdf_ticker['41d'],
            sdf_ticker['42d'], sdf_ticker['43d'], sdf_ticker['44d'],
            sdf_ticker['45d'], sdf_ticker['46d'], sdf_ticker['47d'],
            sdf_ticker['48d'], sdf_ticker['49d'], sdf_ticker['50d']))

    sdf_ticker.drop(['{}d'.format(i) for i in range(1, hm_days + 1)],
                    inplace=True,
                    axis=1)

    #    print(sdf_ticker.iloc[0:30,-51:])
    ctr_label = sdf_ticker['label'].values.tolist()
    print('data spread', Counter(ctr_label))
    a = Counter(ctr_label).get(-1)
    b = Counter(ctr_label).get(0)
    c = Counter(ctr_label).get(1)
    d = a + b + c
    print('-1: ', a / d * 100, "% 1:", c / d * 100, "% 0", b / d * 100, "%")
    return sdf_ticker
def collect_data(trade_data, strategy):
    """Assemble specified stock indicators when entering trade"""

    # bring in dict with the list of entry (start) dates and the PL list
    print(f'TRADE DATA---->{trade_data}')

    # remove the most recent start date if the trade is still open. This make all list equal in length.
    if len(trade_data['start']) > len(trade_data['PL']):
        trade_data['start'].pop()

    df = stock.df.copy(deep=True)  #--->** It is essential to make a copy.

    # create the trade outcome list
    trade_data['outcome'] = [1 if i > 0 else 0 for i in trade_data['PL']]

    print(f'OUTCOME---->{trade_data["outcome"]}')

    # gather stock indicator data at the trade entry date
    indicators = [
        'macd', 'rsi_6', 'rsi_14', 'boll', 'boll_ub', 'boll_lb', 'volume_delta'
    ]
    k = Sdf.retype(df)
    # s[indicators].plot(subplots=True,figsize=(10,6), grid=True)
    df[indicators] = k[indicators].dropna()
    print(f'DATA HEAD---->{df.tail()}')

    # ---> Loop thru the start dates and pull the indicators for those dates

    trade_data['MACD'] = [
        round(df.at[i, 'macd'], 7) for i in trade_data['start']
    ]
    trade_data['MACDH'] = [
        round(df.at[i, 'macdh'], 7) for i in trade_data['start']
    ]
    trade_data['RSI14'] = [
        round(df.at[i, 'rsi_14'], 7) for i in trade_data['start']
    ]
    trade_data['RSI6'] = [
        round(df.at[i, 'rsi_6'], 7) for i in trade_data['start']
    ]
    trade_data['BOLL'] = [
        round(df.at[i, 'boll'], 7) for i in trade_data['start']
    ]
    trade_data['BOLL_UB'] = [
        round(df.at[i, 'boll_ub'], 7) for i in trade_data['start']
    ]
    trade_data['BOLL_LB'] = [
        round(df.at[i, 'boll_lb'], 7) for i in trade_data['start']
    ]
    trade_data['BOLL_WIDTH'] = [
        i - k for i, k in zip(trade_data['BOLL_UB'], trade_data['BOLL_LB'])
    ]
    trade_data['BOLL_WIDTH_PCT'] = [((i - k) / j) * 100 for i, k, j in zip(
        trade_data['BOLL_UB'], trade_data['BOLL_LB'], trade_data['BOLL'])]
    trade_data['VOL_DELTA'] = [
        round(df.at[i, 'volume_delta'], 7) for i in trade_data['start']
    ]

    print(f'TRADE DATA DICT---->\n{trade_data}')

    tradeData = pd.DataFrame.from_dict(trade_data)

    print(tradeData)

    send_results_to_file(
        {
            '--------------------------------->':
            'Trade Data for Analysis'.upper()
        }, 'a')
    send_results_to_file({'Dataset': tradeData}, 'a')

    trade_data_analysis(tradeData, strategy)
Esempio n. 6
0
class StockDataFrameTest(TestCase):
    _stock = Sdf.retype(pd.read_csv(get_file('987654.csv')))
    _supor = Sdf.retype(pd.read_csv(get_file('002032.csv')))

    def get_stock_20day(self):
        return self.get_stock().within(20110101, 20110120)

    def get_stock_30day(self):
        return self.get_stock().within(20110101, 20110130)

    def get_stock_90day(self):
        return self.get_stock().within(20110101, 20110331)

    def get_stock(self):
        return Sdf(self._stock.copy())

    def test_delta(self):
        stock = self.get_stock()
        assert_that(len(stock['volume_delta']), greater_than(1))
        assert_that(stock.ix[20141219]['volume_delta'], equal_to(-63383600))

    def test_multiple_columns(self):
        ret = self.get_stock()
        ret = ret[['open', 'close']]
        assert_that(ret.columns, contains('open', 'close'))

    def test_column_le_count(self):
        stock = self.get_stock_20day()
        c = 'close_13.01_le_5_c'
        stock.get(c)
        assert_that(stock.ix[20110117][c], equal_to(1))
        assert_that(stock.ix[20110119][c], equal_to(3))

    def test_column_delta(self):
        stock = self.get_stock_20day()
        open_d = stock['open_-1_d']
        assert_that(isnan(open_d.ix[20110104]), equal_to(True))
        assert_that(open_d.ix[20110120], close_to(0.07, 0.0001))

    def test_column_delta_p2(self):
        stock = self.get_stock_20day()
        open_d = stock['open_2_d']
        assert_that(isnan(open_d.ix[20110119]), equal_to(True))
        assert_that(open_d.ix[20110118], close_to(-0.2, 0.001))

    def test_column_rate_minus_2(self):
        stock = self.get_stock_20day()
        open_r = stock['open_-2_r']
        assert_that(isnan(open_r.ix[20110105]), equal_to(True))
        assert_that(open_r.ix[20110106], close_to(2.49, 0.01))

    def test_column_rate_prev(self):
        stock = self.get_stock_20day()
        rate = stock['rate']
        assert_that(rate.ix[20110107], close_to(4.41, 0.01))

    def test_column_rate_plus2(self):
        stock = self.get_stock_20day()
        open_r = stock['open_2_r']
        assert_that(open_r.ix[20110118], close_to(-1.566, 0.001))
        assert_that(isnan(open_r.ix[20110119]), equal_to(True))
        assert_that(isnan(open_r.ix[20110120]), equal_to(True))

    def test_middle(self):
        stock = self.get_stock_20day()
        middle = stock['middle']
        assert_that(middle.ix[20110104], close_to(12.53, 0.01))

    def test_cr(self):
        stock = self.get_stock_90day()
        stock.get('cr')
        assert_that(stock['cr'].ix[20110331], close_to(178.2, 0.1))
        assert_that(stock['cr-ma1'].ix[20110331], close_to(120.0, 0.1))
        assert_that(stock['cr-ma2'].ix[20110331], close_to(117.1, 0.1))
        assert_that(stock['cr-ma3'].ix[20110331], close_to(111.5, 0.1))

    def test_column_permutation(self):
        stock = self.get_stock_20day()
        amount_p = stock['volume_-1_d_-3,-2,-1_p']
        assert_that(amount_p.ix[20110107:20110112], contains(2, 5, 2, 4))
        assert_that(isnan(amount_p.ix[20110104]), equal_to(True))
        assert_that(isnan(amount_p.ix[20110105]), equal_to(True))
        assert_that(isnan(amount_p.ix[20110106]), equal_to(True))

    def test_column_max(self):
        stock = self.get_stock_20day()
        volume_max = stock['volume_-3,2,-1_max']
        assert_that(volume_max.ix[20110106], equal_to(166409700))
        assert_that(volume_max.ix[20110120], equal_to(110664100))
        assert_that(volume_max.ix[20110112], equal_to(362436800))

    def test_column_min(self):
        stock = self.get_stock_20day()
        volume_max = stock['volume_-3~1_min']
        assert_that(volume_max.ix[20110106], equal_to(83140300))
        assert_that(volume_max.ix[20110120], equal_to(50888500))
        assert_that(volume_max.ix[20110112], equal_to(72035800))

    def test_column_shift_positive(self):
        stock = self.get_stock_20day()
        close_s = stock['close_2_s']
        assert_that(close_s.ix[20110118], equal_to(12.48))
        assert_that(isnan(close_s.ix[20110119]), equal_to(True))
        assert_that(isnan(close_s.ix[20110120]), equal_to(True))

    def test_column_shift_zero(self):
        stock = self.get_stock_20day()
        close_s = stock['close_0_s']
        assert_that(close_s.ix[20110118:20110120],
                    contains(12.69, 12.82, 12.48))

    def test_column_shift_negative(self):
        stock = self.get_stock_20day()
        close_s = stock['close_-1_s']
        assert_that(isnan(close_s.ix[20110104]), equal_to(True))
        assert_that(close_s.ix[20110105:20110106], contains(12.61, 12.71))

    def test_column_rsv(self):
        stock = self.get_stock_20day()
        rsv_3 = stock['rsv_3']
        assert_that(rsv_3.ix[20110106], close_to(60.65, 0.01))

    def test_column_kdj_default(self):
        stock = self.get_stock_20day()
        assert_that(stock['kdjk'].ix[20110104], close_to(60.52, 0.01))
        assert_that(stock['kdjd'].ix[20110104], close_to(53.50, 0.01))
        assert_that(stock['kdjj'].ix[20110104], close_to(74.56, 0.01))

    def test_column_kdjk(self):
        stock = self.get_stock_20day()
        kdjk_3 = stock['kdjk_3']
        assert_that(kdjk_3.ix[20110104], close_to(60.52, 0.01))
        assert_that(kdjk_3.ix[20110120], close_to(31.21, 0.01))

    def test_column_kdjd(self):
        stock = self.get_stock_20day()
        kdjk_3 = stock['kdjd_3']
        assert_that(kdjk_3.ix[20110104], close_to(53.50, 0.01))
        assert_that(kdjk_3.ix[20110120], close_to(43.13, 0.01))

    def test_column_kdjj(self):
        stock = self.get_stock_20day()
        kdjk_3 = stock['kdjj_3']
        assert_that(kdjk_3.ix[20110104], close_to(74.56, 0.01))
        assert_that(kdjk_3.ix[20110120], close_to(7.37, 0.01))

    def test_column_cross(self):
        stock = self.get_stock_30day()
        cross = stock['kdjk_3_x_kdjd_3']
        assert_that(sum(cross), equal_to(2))
        assert_that(cross.ix[20110114], equal_to(True))
        assert_that(cross.ix[20110125], equal_to(True))

    def test_column_cross_up(self):
        stock = self.get_stock_30day()
        cross = stock['kdjk_3_xu_kdjd_3']
        assert_that(sum(cross), equal_to(1))
        assert_that(cross.ix[20110125], equal_to(True))

    def test_column_cross_down(self):
        stock = self.get_stock_30day()
        cross = stock['kdjk_3_xd_kdjd_3']
        assert_that(sum(cross), equal_to(1))
        assert_that(cross.ix[20110114], equal_to(True))

    def test_column_sma(self):
        stock = self.get_stock_20day()
        sma_2 = stock['open_2_sma']
        assert_that(sma_2.ix[20110105], close_to(12.56, 0.001))

    def test_column_ema(self):
        stock = self.get_stock_20day()
        ema_5 = stock['close_5_ema']
        assert_that(isnan(ema_5.ix[20110107]), equal_to(False))
        assert_that(ema_5.ix[20110110], close_to(12.9668, 0.01))

    def test_column_macd(self):
        stock = self.get_stock_90day()
        stock.get('macd')
        record = stock.ix[20110225]
        assert_that(record['macd'], close_to(-0.0382, 0.0001))
        assert_that(record['macds'], close_to(-0.0101, 0.0001))
        assert_that(record['macdh'], close_to(-0.02805, 0.0001))

    def test_column_macds(self):
        stock = self.get_stock_90day()
        stock.get('macds')
        record = stock.ix[20110225]
        assert_that(record['macds'], close_to(-0.0101, 0.0001))

    def test_column_macdh(self):
        stock = self.get_stock_90day()
        stock.get('macdh')
        record = stock.ix[20110225]
        assert_that(record['macdh'], close_to(-0.02805, 0.0001))

    def test_column_mstd(self):
        stock = self.get_stock_20day()
        mstd_3 = stock['close_3_mstd']
        assert_that(mstd_3.ix[20110106], close_to(0.05033, 0.001))

    def test_bollinger(self):
        stock = self.get_stock().within(20140930, 20141211)
        boll_ub = stock['boll_ub']
        boll_lb = stock['boll_lb']
        assert_that(stock['boll'].ix[20141103], close_to(9.80, 0.01))
        assert_that(boll_ub.ix[20141103], close_to(10.1310, 0.01))
        assert_that(boll_lb.ix[20141103], close_to(9.48, 0.01))

    def test_bollinger_empty(self):
        stock = self.get_stock().within(18800101, 18900101)
        s = stock['boll_ub']
        assert_that(len(s), equal_to(0))

    def test_column_mvar(self):
        stock = self.get_stock_20day()
        mvar_3 = stock['open_3_mvar']
        assert_that(mvar_3.ix[20110106], close_to(0.0292, 0.001))

    def test_parse_column_name_1(self):
        c, r, t = Sdf.parse_column_name('amount_-5~-1_p')
        assert_that(c, equal_to('amount'))
        assert_that(r, equal_to('-5~-1'))
        assert_that(t, equal_to('p'))

    def test_parse_column_name_2(self):
        c, r, t = Sdf.parse_column_name('open_+2~4_d')
        assert_that(c, equal_to('open'))
        assert_that(r, equal_to('+2~4'))
        assert_that(t, equal_to('d'))

    def test_parse_column_name_stacked(self):
        c, r, t = Sdf.parse_column_name('open_-1_d_-1~-3_p')
        assert_that(c, equal_to('open_-1_d'))
        assert_that(r, equal_to('-1~-3'))
        assert_that(t, equal_to('p'))

    def test_parse_column_name_3(self):
        c, r, t = Sdf.parse_column_name('close_-3,-1,+2_p')
        assert_that(c, equal_to('close'))
        assert_that(r, equal_to('-3,-1,+2'))
        assert_that(t, equal_to('p'))

    def test_parse_column_name_max(self):
        c, r, t = Sdf.parse_column_name('close_-3,-1,+2_max')
        assert_that(c, equal_to('close'))
        assert_that(r, equal_to('-3,-1,+2'))
        assert_that(t, equal_to('max'))

    def test_parse_column_name_float(self):
        c, r, t = Sdf.parse_column_name('close_12.32_le')
        assert_that(c, equal_to('close'))
        assert_that(r, equal_to('12.32'))
        assert_that(t, equal_to('le'))

    def test_parse_column_name_stacked_xu(self):
        c, r, t = Sdf.parse_column_name('cr-ma2_xu_cr-ma1_20_c')
        assert_that(c, equal_to('cr-ma2_xu_cr-ma1'))
        assert_that(r, equal_to('20'))
        assert_that(t, equal_to('c'))

    def test_parse_column_name_rsv(self):
        c, r, t = Sdf.parse_column_name('rsv_9')
        assert_that(c, equal_to('rsv'))
        assert_that(r, equal_to('9'))

    def test_parse_column_name_no_match(self):
        c, r, t = Sdf.parse_column_name('no match')
        assert_that(c, none())
        assert_that(r, none())
        assert_that(t, none())

    def test_to_int_split(self):
        shifts = Sdf.to_ints('5,1,3, -2')
        assert_that(shifts, contains(-2, 1, 3, 5))

    def test_to_int_continue(self):
        shifts = Sdf.to_ints('3, -3~-1, 5')
        assert_that(shifts, contains(-3, -2, -1, 3, 5))

    def test_to_int_dedup(self):
        shifts = Sdf.to_ints('3, -3~-1, 5, -2~-1')
        assert_that(shifts, contains(-3, -2, -1, 3, 5))

    def test_to_floats(self):
        floats = Sdf.to_floats('1.3, 4, -12.5, 4.0')
        assert_that(floats, contains(-12.5, 1.3, 4))

    def test_to_float(self):
        number = Sdf.to_float('12.3')
        assert_that(number, equal_to(12.3))

    def test_is_cross_columns(self):
        assert_that(Sdf.is_cross_columns('a_x_b'), equal_to(True))
        assert_that(Sdf.is_cross_columns('a_xu_b'), equal_to(True))
        assert_that(Sdf.is_cross_columns('a_xd_b'), equal_to(True))
        assert_that(Sdf.is_cross_columns('a_xx_b'), equal_to(False))
        assert_that(Sdf.is_cross_columns('a_xa_b'), equal_to(False))
        assert_that(Sdf.is_cross_columns('a_x_'), equal_to(False))
        assert_that(Sdf.is_cross_columns('_xu_b'), equal_to(False))
        assert_that(Sdf.is_cross_columns('_xd_'), equal_to(False))

    def test_parse_cross_column(self):
        assert_that(Sdf.parse_cross_column('a_x_b'), contains('a', 'x', 'b'))

    def test_parse_cross_column_xu(self):
        assert_that(Sdf.parse_cross_column('a_xu_b'), contains('a', 'xu', 'b'))

    def test_get_shift_convolve_array(self):
        assert_that(Sdf.get_diff_convolve_array(0), contains(1))
        assert_that(Sdf.get_diff_convolve_array(-1), contains(1, -1))
        assert_that(Sdf.get_diff_convolve_array(-2), contains(1, 0, -1))
        assert_that(Sdf.get_diff_convolve_array(2), contains(-1, 0, 1))

    def test_get_log_ret(self):
        stock = self.get_stock_30day()
        stock.get('log-ret')
        assert_that(stock.ix[20110128]['log-ret'],
                    close_to(-0.010972, 0.000001))

    def test_in_date_delta(self):
        stock = self.get_stock_20day()
        assert_that(
            stock.in_date_delta(-4, 20110110).index,
            only_contains(20110106, 20110107, 20110110))
        assert_that(
            stock.in_date_delta(3, 20110110).index,
            only_contains(20110110, 20110111, 20110112, 20110113))

    def test_rsv_nan_value(self):
        s = Sdf.retype(pd.read_csv(get_file('asml.as.csv')))
        df = Sdf.retype(s)
        assert_that(df['rsv_9'][0], equal_to(0.0))

    def test_get_rsi(self):
        self._supor.get('rsi_6')
        self._supor.get('rsi_12')
        self._supor.get('rsi_24')
        assert_that(self._supor.ix[20160817]['rsi_6'], close_to(71.31, 0.01))
        assert_that(self._supor.ix[20160817]['rsi_12'], close_to(63.11, 0.01))
        assert_that(self._supor.ix[20160817]['rsi_24'], close_to(61.31, 0.01))

    def test_get_wr(self):
        self._supor.get('wr_10')
        self._supor.get('wr_6')
        assert_that(self._supor.ix[20160817]['wr_10'], close_to(13.06, 0.01))
        assert_that(self._supor.ix[20160817]['wr_6'], close_to(16.53, 0.01))

    def test_get_cci(self):
        self._supor.get('cci_14')
        self._supor.get('cci')
        assert_that(self._supor.ix[20160817]['cci'], close_to(50, 0.01))
        assert_that(self._supor.ix[20160817]['cci_14'], close_to(50, 0.01))
        assert_that(self._supor.ix[20160816]['cci_14'], close_to(24.8, 0.01))
        assert_that(self._supor.ix[20160815]['cci_14'], close_to(-26.46, 0.01))

    def test_get_atr(self):
        self._supor.get('atr_14')
        self._supor.get('atr')
        assert_that(self._supor.ix[20160817]['atr_14'], close_to(1.33, 0.01))
        assert_that(self._supor.ix[20160817]['atr'], close_to(1.33, 0.01))
        assert_that(self._supor.ix[20160816]['atr'], close_to(1.32, 0.01))
        assert_that(self._supor.ix[20160815]['atr'], close_to(1.28, 0.01))

    def test_get_sma_tr(self):
        c = self._supor.get('tr_14_sma')
        assert_that(c.ix[20160817], close_to(1.33, 0.01))
        assert_that(c.ix[20160816], close_to(1.37, 0.01))
        assert_that(c.ix[20160815], close_to(1.47, 0.01))

    def test_get_dma(self):
        c = self._supor.get('dma')
        assert_that(c.ix[20160817], close_to(2.08, 0.01))
        assert_that(c.ix[20160816], close_to(2.15, 0.01))
        assert_that(c.ix[20160815], close_to(2.27, 0.01))

    def test_get_pdi(self):
        c = self._supor.get('pdi')
        assert_that(c.ix[20160817], close_to(24.60, 0.01))
        assert_that(c.ix[20160816], close_to(28.60, 0.01))
        assert_that(c.ix[20160815], close_to(21.23, 0.01))

    def test_get_mdi(self):
        c = self._supor.get('mdi')
        assert_that(c.ix[20160817], close_to(13.60, 0.01))
        assert_that(c.ix[20160816], close_to(15.82, 0.01))
        assert_that(c.ix[20160815], close_to(18.85, 0.01))

    def test_dx(self):
        c = self._supor.get('dx')
        assert_that(c.ix[20160817], close_to(28.78, 0.01))
        assert_that(c.ix[20160815], close_to(5.95, 0.01))
        assert_that(c.ix[20160812], close_to(10.05, 0.01))

    def test_adx(self):
        c = self._supor.get('adx')
        assert_that(c.ix[20160817], close_to(20.15, 0.01))
        assert_that(c.ix[20160816], close_to(16.71, 0.01))
        assert_that(c.ix[20160815], close_to(11.88, 0.01))

    def test_adxr(self):
        c = self._supor.get('adxr')
        assert_that(c.ix[20160817], close_to(17.36, 0.01))
        assert_that(c.ix[20160816], close_to(16.24, 0.01))
        assert_that(c.ix[20160815], close_to(16.06, 0.01))

    def test_trix_default(self):
        c = self._supor.get('trix')
        assert_that(c.ix[20160817], close_to(0.20, 0.01))
        assert_that(c.ix[20160816], close_to(0.21, 0.01))
        assert_that(c.ix[20160815], close_to(0.24, 0.01))

    def test_trix_ma(self):
        c = self._supor.get('trix_9_sma')
        assert_that(c.ix[20160817], close_to(0.34, 0.01))
        assert_that(c.ix[20160816], close_to(0.38, 0.01))
        assert_that(c.ix[20160815], close_to(0.42, 0.01))

    def test_vr_default(self):
        c = self._supor['vr']
        assert_that(c.ix[20160817], close_to(153.2, 0.01))
        assert_that(c.ix[20160816], close_to(171.69, 0.01))
        assert_that(c.ix[20160815], close_to(178.78, 0.01))

        c = self._supor['vr_26']
        assert_that(c.ix[20160817], close_to(153.2, 0.01))
        assert_that(c.ix[20160816], close_to(171.69, 0.01))
        assert_that(c.ix[20160815], close_to(178.78, 0.01))

    def test_vr_ma(self):
        c = self._supor['vr_6_sma']
        assert_that(c.ix[20160817], close_to(182.77, 0.01))
        assert_that(c.ix[20160816], close_to(190.1, 0.01))
        assert_that(c.ix[20160815], close_to(197.52, 0.01))
Esempio n. 7
0
def test_rl():
    import gym
    import datetime as dt
    import matplotlib.pyplot as plt

    # from stable_baselines.common.policies import MlpPolicy, CnnPolicy, MlpLstmPolicy, ActorCriticPolicy, LstmPolicy
    # from stable_baselines.common.vec_env import DummyVecEnv
    # from stable_baselines import PPO2, PPO1, A2C, DQN, TD3, SAC

    # from stable_baselines3.common.policies import MlpPolicy
    from stable_baselines3 import PPO
    from stable_baselines3.common.vec_env import DummyVecEnv
    from stable_baselines3.common.evaluation import evaluate_policy

    from sklearn import preprocessing

    import pandas as pd

    from lutils.stock import LTdxHq

    ltdxhq = LTdxHq()
    df = ltdxhq.get_k_data_1min('600519') # 000032 300142 603636 600519
    df = ltdxhq.get_k_data_daily('600519') # 000032 300142 603636 600519
    df = StockDataFrame(df.rename(columns={'vol': 'volume'}))

    # min_max_scaler = preprocessing.MinMaxScaler()
    # df = pd.DataFrame(min_max_scaler.fit_transform(df.drop(columns=['date', 'code'])))
    # df.columns = ['open', 'close', 'high', 'low', 'volume', 'amount']

    ltdxhq.close()
    # df = ltdxhq.get_k_data_5min('603636')
    # df = ltdxhq.get_k_data_daily('603636')

    df1 = df[:-240]
    df2 = df[-240:]
    # The algorithms require a vectorized environment to run
    env = DummyVecEnv([lambda: LStockDailyEnv(df1)])
    # model = PPO2(MlpPolicy, env, verbose=1) # , tensorboard_log='log')
    model = PPO('MlpPolicy', env, verbose=1) # , tensorboard_log='log')
    model.learn(20000)
    # model = PPO1(LstmPolicy, env, verbose=1)
    # model.learn(total_timesteps=1000)



    # env.set_attr('df', df2)
    # obs = env.reset()

    # rewards = []
    # actions = []
    # net_worths = []
    # # for i in range(220):
    # for i in range(NEXT_OBSERVATION_SIZE, df2.shape[0]):
    #     # actual_obs = observation(df2, i)
    #     # action, _states = model.predict(actual_obs)
    #     # action = [action]
    #     action, _states = model.predict(obs)
    #     obs, reward, done, info = env.step(action)
    #     rewards.append(reward)
    #     actions.append(action[0][0])
    #     net_worths.append(info[0]['net_worth'])
    #     # print(info[0]['current_step'])
    #     env.render()

    # mean_reward, _  = evaluate_policy(model, eval_env, n_eval_episodes=1, render=True) # EVAL_EPS

    # print(mean_reward)

    eval_env = DummyVecEnv([lambda: LStockDailyEnv(df2, True)])
    obs = eval_env.reset()

    net_worths = []
    actions = []
    done, state = False, None
    while not done:
        action, state = model.predict(obs, state=state, deterministic=True)
        obs, reward, done, _info = eval_env.step(action)
        net_worths.append(_info[0]['net_worth'])
        # if is_recurrent:
        #     obs[0, :] = new_obs
        # else:
        #     obs = new_obs
        action_type = action[0][0]
        if action_type < 1: # Buy
            actions.append(1)
        elif action_type >= 1 and action_type < 2: # Sell
            actions.append(2)
        else:
            actions.append(0)

        eval_env.render()

    # plt.plot(net_worths)
    # plt.plot(actions)
    # plt.show()

    fig, ax = plt.subplots()
    # ax.plot(rewards, label='rewards')
    ax.plot(actions, '.', label='actions')
    # ax.legend()
    ax2 = ax.twinx()
    ax2.plot(net_worths, label='net worth', color='red')
    ax2.legend()
    plt.show()
Esempio n. 8
0
 def test_parse_column_name_stacked_xu(self):
     c, r, t = Sdf.parse_column_name('cr-ma2_xu_cr-ma1_20_c')
     assert_that(c, equal_to('cr-ma2_xu_cr-ma1'))
     assert_that(r, equal_to('20'))
     assert_that(t, equal_to('c'))
Esempio n. 9
0
 def test_parse_column_name_rsv(self):
     c, r, t = Sdf.parse_column_name('rsv_9')
     assert_that(c, equal_to('rsv'))
     assert_that(r, equal_to('9'))
Esempio n. 10
0
 def test_parse_column_name_max(self):
     c, r, t = Sdf.parse_column_name('close_-3,-1,+2_max')
     assert_that(c, equal_to('close'))
     assert_that(r, equal_to('-3,-1,+2'))
     assert_that(t, equal_to('max'))
Esempio n. 11
0
 def test_parse_column_name_float(self):
     c, r, t = Sdf.parse_column_name('close_12.32_le')
     assert_that(c, equal_to('close'))
     assert_that(r, equal_to('12.32'))
     assert_that(t, equal_to('le'))
Esempio n. 12
0
 def test_parse_column_name_stacked(self):
     c, r, t = Sdf.parse_column_name('open_-1_d_-1~-3_p')
     assert_that(c, equal_to('open_-1_d'))
     assert_that(r, equal_to('-1~-3'))
     assert_that(t, equal_to('p'))
Esempio n. 13
0
 def test_parse_column_name_2(self):
     c, r, t = Sdf.parse_column_name('open_+2~4_d')
     assert_that(c, equal_to('open'))
     assert_that(r, equal_to('+2~4'))
     assert_that(t, equal_to('d'))
Esempio n. 14
0
 def test_parse_column_name_1(self):
     c, r, t = Sdf.parse_column_name('amount_-5~-1_p')
     assert_that(c, equal_to('amount'))
     assert_that(r, equal_to('-5~-1'))
     assert_that(t, equal_to('p'))
Esempio n. 15
0
 def test_get_shift_convolve_array(self):
     assert_that(Sdf.get_diff_convolve_array(0), contains(1))
     assert_that(Sdf.get_diff_convolve_array(-1), contains(1, -1))
     assert_that(Sdf.get_diff_convolve_array(-2), contains(1, 0, -1))
     assert_that(Sdf.get_diff_convolve_array(2), contains(-1, 0, 1))
Esempio n. 16
0
 def test_parse_column_name_no_match(self):
     c, r, t = Sdf.parse_column_name('no match')
     assert_that(c, none())
     assert_that(r, none())
     assert_that(t, none())
Esempio n. 17
0
 def test_rsv_nan_value(self):
     s = Sdf.retype(pd.read_csv(get_file('asml.as.csv')))
     df = Sdf.retype(s)
     assert_that(df['rsv_9'][0], equal_to(0.0))
Esempio n. 18
0
 def test_to_int_split(self):
     shifts = Sdf.to_ints('5,1,3, -2')
     assert_that(shifts, contains(-2, 1, 3, 5))
Esempio n. 19
0
 def add_d(rates: StockDataFrame):
     rates['d'] = to_datetime(rates.index, unit='s', utc=True)
     rates.d = rates.d.dt.strftime('%Y-%m-%d %H:%M:%S')
     return rates
Esempio n. 20
0
 def test_to_int_continue(self):
     shifts = Sdf.to_ints('3, -3~-1, 5')
     assert_that(shifts, contains(-3, -2, -1, 3, 5))
Esempio n. 21
0
    def __init__(self):
        config.loads('config.json')
        self.asset = 10000
        self.backtest = BackTest()

        # data = Market.kline('sh600519', '1d')
        # print(data)
        ltdxhq = LTdxHq()
        # df = ltdxhq.get_k_data_daily('603636', start='2021-09-01') # 000032 300142 603636 600519
        # df = ltdxhq.get_k_data_1min('000032', start='2021-08-31') # 000032 300142 603636 600519
        df = ltdxhq.get_k_data_daily('000032', start='2020-01-01')
        df = StockDataFrame(df)
        ltdxhq.close()
        # print(df.head())

        self.kline = []
        self.buy_signal = []
        self.sell_signal = []

        # 2005-08-11 15:00
        # open            46.01
        # close           47.37
        # high            47.40
        # low             46.01
        # vol        1359360.00
        # amount    63589532.00
        data = []
        for index, row in df.iterrows():
            data.append([
                index[:10],
                row.open,
                row.high,
                row.low,
                row.close,
                row.vol,
            ])

        policy_kwargs = dict(
            net_arch=[128, 'lstm',
                      dict(vf=[256, 256], pi=[256, 256])])
        self.model = A2C.load('ppo_stock')
        self.state = None

        for current_step in range(10, df.shape[0]):
            obs = np.array([
                df.iloc[current_step -
                        NEXT_OBSERVATION_SIZE:current_step]['open'].values /
                MAX_SHARE_PRICE,
                df.iloc[current_step -
                        NEXT_OBSERVATION_SIZE:current_step]['high'].values /
                MAX_SHARE_PRICE,
                df.iloc[current_step -
                        NEXT_OBSERVATION_SIZE:current_step]['low'].values /
                MAX_SHARE_PRICE,
                df.iloc[current_step -
                        NEXT_OBSERVATION_SIZE:current_step]['close'].values /
                MAX_SHARE_PRICE,
                df.iloc[current_step -
                        NEXT_OBSERVATION_SIZE:current_step]['vol'].values /
                MAX_NUM_SHARES,
                df.iloc[current_step -
                        NEXT_OBSERVATION_SIZE:current_step]['amount'].values /
                MAX_NUM_SHARES,
                # df['close'].pct_change().fillna(0)[current_step: current_step + NEXT_OBSERVATION_SIZE],
                df['macd']
                [current_step - NEXT_OBSERVATION_SIZE:current_step].values,
                df['macdh'][current_step -
                            NEXT_OBSERVATION_SIZE:current_step].values,
                df['macds'][current_step -
                            NEXT_OBSERVATION_SIZE:current_step].values,
                df['kdjk'][current_step -
                           NEXT_OBSERVATION_SIZE:current_step].values,
                df['kdjd'][current_step -
                           NEXT_OBSERVATION_SIZE:current_step].values,
                df['kdjj'][current_step -
                           NEXT_OBSERVATION_SIZE:current_step].values,
                df['rsi_6'][current_step -
                            NEXT_OBSERVATION_SIZE:current_step].fillna(
                                0).values,
                df['rsi_12'][current_step -
                             NEXT_OBSERVATION_SIZE:current_step].fillna(
                                 0).values,
            ])

            # df.index.values[current_step][:10]
            self.kline.append([
                df.index.get_level_values(level=0)[current_step],
                df.iloc[current_step].open, df.iloc[current_step].high,
                df.iloc[current_step].low, df.iloc[current_step].close,
                df.iloc[current_step].vol
            ])

            self.backtest.initialize(self.kline, data)
            self.begin(obs)

        # print(self.buy_signal)
        # print(self.sell_signal)
        plot_asset()
        plot_signal(self.kline, self.buy_signal,
                    self.sell_signal)  # , df['macd'].values)
Esempio n. 22
0
 def test_to_int_dedup(self):
     shifts = Sdf.to_ints('3, -3~-1, 5, -2~-1')
     assert_that(shifts, contains(-3, -2, -1, 3, 5))
Esempio n. 23
0
def graph_update(n):
    df = pd.read_csv('binance_BTCUSDT_1m.txt')

    stock = Sdf.retype(df)
    df['signal'] = stock['macds']
    df['macd'] = stock['macd']
    df['hist'] = stock['macdh']

    rsi_6 = stock["rsi_6"]
    rsi_12 = stock["rsi_12"]

    df = df.tail(10080)
    df['time'] = pd.to_datetime(df['time'], unit='s')
    df['time'] = df['time'] + timedelta(hours=3)
    layout = Layout(plot_bgcolor='rgb(0, 0, 0)')
    layout.xaxis.rangeselector.bgcolor = 'grey'
    layout.hovermode = 'closest'
    fig = make_subplots(shared_xaxes=True, rows=4, cols=1, row_heights=[0.6, 0.15, 0.3, 0.3],
                        vertical_spacing=0.009, horizontal_spacing=0.009)
    fig['layout']['margin'] = {'l': 30, 'r': 10, 'b': 50, 't': 25}
    graph_candlestick = fig.add_trace(go.Candlestick(
        x=df['time'],
        open=df['open'],
        high=df['high'],
        low=df['low'],
        close=df['close'], name='candlestick'), row=1, col=1)
    fig.update_xaxes(rangeslider_visible=False)
    ap = fig.add_trace(go.Scatter(name='macd', x=df['time'], y=df['macd'], line=dict(color='blue')), row=3, col=1)
    ap1 = fig.add_trace(go.Scatter(name='signal', x=df['time'], y=df['signal'], line=dict(color='orange')), row=3,
                        col=1)
    ap2 = fig.add_trace(go.Bar(name='histogram', x=df['time'], y=df['hist'], marker_color='green'), row=2, col=1)
    ap2.update_layout(barmode='stack')
    fig.update_layout(template='plotly_dark')
    ap3 = fig.add_trace(go.Scatter(x=df['time'], y=list(rsi_6), name="RSI 6 Day"), row=4, col=1)
    graph_candlestick.update_layout(margin=dict(l=50, r=50, b=50, t=20, pad=4))
    graph_candlestick.update_layout(template='plotly_dark')
    graph_candlestick.update_xaxes(showline=True, linewidth=2, linecolor='black', gridcolor='#161616')
    graph_candlestick.update_yaxes(showline=True, linewidth=2, linecolor='black', gridcolor='#161616')
    graph_candlestick.update_xaxes(rangeslider_visible=False)
    graph_candlestick.update_layout(
        xaxis=dict(
            rangeselector=dict(
                buttons=list([
                    dict(count=5,
                         label="1m",
                         step='minute',
                         stepmode="backward", ),
                    dict(count=25,
                         label="5m",
                         step="minute",
                         stepmode="todate"),
                    dict(count=75,
                         label="10m",
                         step="minute",
                         stepmode="todate"),
                    dict(count=1,
                         label="1h",
                         step="hour",
                         stepmode="todate"),
                    dict(count=3,
                         label="30m",
                         step="hour",
                         stepmode="todate"),
                    dict(count=1,
                         label="1d",
                         step="day",
                         stepmode="todate"),
                    dict(count=3,
                         label="3d",
                         step="day",
                         stepmode="todate"),
                    dict(step="all")
                ])
            ),
            rangeslider=dict(
                visible=False
            ),
            type="date"
        )
    )
    return graph_candlestick, ap, ap1, ap2, ap3
Esempio n. 24
0
 def test_to_floats(self):
     floats = Sdf.to_floats('1.3, 4, -12.5, 4.0')
     assert_that(floats, contains(-12.5, 1.3, 4))
    async def run(
        self,
        symbol: str,
        shortable: bool,
        position: int,
        minute_history: df,
        now: datetime,
        portfolio_value: float = None,
        trading_api: tradeapi = None,
        debug: bool = False,
        backtesting: bool = False,
    ) -> Tuple[bool, Dict]:
        data = minute_history.iloc[-1]
        prev_min = minute_history.iloc[-2]

        morning_rush = (True if (now - config.market_open).seconds // 60 < 30
                        else False)

        if (await super().is_buy_time(now) and not position
                and not open_orders.get(symbol, None)
                and not await self.should_cool_down(symbol, now)):
            # Check for buy signals
            lbound = config.market_open.replace(second=0, microsecond=0)
            ubound = lbound + timedelta(minutes=15)
            try:
                high_15m = minute_history[lbound:ubound]["high"].max(
                )  # type: ignore
            except Exception as e:

                tlog(
                    f"{symbol}[{now}] failed to aggregate {lbound}:{ubound} {minute_history}"
                )
                return False, {}

            if data.close > high_15m or (hasattr(config,
                                                 "bypass_market_schedule")
                                         and config.bypass_market_schedule):
                close = (minute_history["close"].dropna().between_time(
                    "9:30", "16:00"))

                old_stdout = sys.stdout  # backup current stdout
                sys.stdout = open(os.devnull, "w")

                stock = StockDataFrame(close)

                macd = stock["macd"]
                macd_signal = stock["macds"]
                macd_hist = stock["macdh"]

                sys.stdout = old_stdout  # reset old stdout

                macd_trending = macd[-3] < macd[-2] < macd[-1]
                macd_above_signal = macd[-1] > macd_signal[-1] * 1.1
                macd_hist_trending = (macd_hist[-3] < macd_hist[-2] <
                                      macd_hist[-1])

                if (macd[-1] > 0 and macd_trending and macd_above_signal
                        and macd_hist_trending
                        and (data.vwap > data.open > prev_min.close
                             and data.vwap != 0.0 or data.vwap == 0.0
                             and data.close > data.open > prev_min.close)):

                    if debug:
                        tlog(f"[{self.name}][{now}] slow macd confirmed trend")

                    # check RSI does not indicate overbought
                    rsi = stock["rsi_20"]

                    if debug:
                        tlog(
                            f"[{self.name}][{now}] {symbol} RSI={round(rsi[-1], 2)}"
                        )

                    rsi_limit = 75
                    if rsi[-1] < rsi_limit:
                        if debug:
                            tlog(
                                f"[{self.name}][{now}] {symbol} RSI {round(rsi[-1], 2)} <= {rsi_limit}"
                            )
                    else:
                        tlog(
                            f"[{self.name}][{now}] {symbol} RSI over-bought, cool down for 5 min"
                        )
                        cool_down[symbol] = now.replace(
                            second=0, microsecond=0) + timedelta(minutes=5)

                        return False, {}

                    stop_price = find_stop(
                        data.close if not data.vwap else data.vwap,
                        minute_history,
                        now,
                    )
                    target_price = 3 * (data.close - stop_price) + data.close
                    target_prices[symbol] = target_price
                    stop_prices[symbol] = stop_price

                    if portfolio_value is None:
                        if trading_api:

                            retry = 3
                            while retry > 0:
                                try:
                                    portfolio_value = float(
                                        trading_api.get_account(
                                        ).portfolio_value)
                                    break
                                except ConnectionError as e:
                                    tlog(
                                        f"[{symbol}][{now}[Error] get_account() failed w/ {e}, retrying {retry} more times"
                                    )
                                    await asyncio.sleep(0)
                                    retry -= 1

                            if not portfolio_value:
                                tlog(
                                    "f[{symbol}][{now}[Error] failed to get portfolio_value"
                                )
                                return False, {}
                        else:
                            raise Exception(
                                f"{self.name}: both portfolio_value and trading_api can't be None"
                            )

                    shares_to_buy = (portfolio_value * config.risk //
                                     (data.close - stop_prices[symbol]))
                    if not shares_to_buy:
                        shares_to_buy = 1
                    shares_to_buy -= position
                    if shares_to_buy > 0:
                        self.whipsawed[symbol] = False

                        buy_price = max(data.close, data.vwap)
                        tlog(
                            f"[{self.name}][{now}] Submitting buy for {shares_to_buy} shares of {symbol} at {buy_price} target {target_prices[symbol]} stop {stop_prices[symbol]}"
                        )

                        buy_indicators[symbol] = {
                            "macd": macd[-5:].tolist(),
                            "macd_signal": macd_signal[-5:].tolist(),
                            "vwap": data.vwap,
                            "avg": data.average,
                        }

                        return (
                            True,
                            {
                                "side": "buy",
                                "qty": str(shares_to_buy),
                                "type": "limit",
                                "limit_price": str(buy_price),
                            } if not morning_rush else {
                                "side": "buy",
                                "qty": str(shares_to_buy),
                                "type": "market",
                            },
                        )
            else:
                if debug:
                    tlog(f"[{self.name}][{now}] {data.close} < 15min high ")
        if (await super().is_sell_time(now) and position > 0
                and symbol in latest_cost_basis
                and last_used_strategy[symbol].name == self.name
                and not open_orders.get(symbol)):
            if (not self.whipsawed.get(symbol, None)
                    and data.close < latest_cost_basis[symbol] * 0.99):
                self.whipsawed[symbol] = True

            serie = (minute_history["close"].dropna().between_time(
                "9:30", "16:00"))

            if data.vwap:
                serie[-1] = data.vwap

            old_stdout = sys.stdout  # backup current stdout
            sys.stdout = open(os.devnull, "w")

            stock = StockDataFrame(serie)
            stock.MACD_EMA_SHORT = 13
            stock.MACD_EMA_LONG = 21

            macd = stock["macd"]
            macd_signal = stock["macds"]

            rsi = stock["rsi_20"]

            sys.stdout = old_stdout  # reset old stdout

            movement = (data.close - latest_scalp_basis[symbol]
                        ) / latest_scalp_basis[symbol]
            macd_val = macd[-1]
            macd_signal_val = macd_signal[-1]

            round_factor = (2 if macd_val >= 0.1 or macd_signal_val >= 0.1 else
                            3)
            scalp_threshold = (target_prices[symbol] +
                               latest_scalp_basis[symbol]) / 2.0

            macd_below_signal = round(macd_val, round_factor) < round(
                macd_signal_val, round_factor)
            bail_out = ((latest_scalp_basis[symbol] > latest_cost_basis[symbol]
                         or movement > 0.02) and macd_below_signal
                        and round(macd[-1], round_factor) < round(
                            macd[-2], round_factor))
            bail_on_whipsawed = (self.whipsawed.get(symbol, False)
                                 and data.close > latest_cost_basis[symbol]
                                 and macd_below_signal
                                 and round(macd[-1], round_factor) < round(
                                     macd[-2], round_factor))
            scalp = movement > 0.04 or data.vwap > scalp_threshold
            below_cost_base = data.vwap < latest_cost_basis[symbol]

            rsi_limit = 79 if not morning_rush else 85
            to_sell = False
            partial_sell = False
            limit_sell = False
            sell_reasons = []
            if data.close <= stop_prices[symbol]:
                to_sell = True
                sell_reasons.append("stopped")
            elif (below_cost_base
                  and round(macd_val, 2) < 0 and rsi[-1] < rsi[-2] and round(
                      macd[-1], round_factor) < round(macd[-2], round_factor)
                  and data.vwap < 0.95 * data.average):
                to_sell = True
                sell_reasons.append(
                    "below cost & macd negative & RSI trending down and too far from VWAP"
                )
            elif data.close >= target_prices[symbol] and macd[-1] <= 0:
                to_sell = True
                sell_reasons.append("above target & macd negative")
            elif rsi[-1] >= rsi_limit:
                to_sell = True
                sell_reasons.append("rsi max, cool-down for 5 minutes")
                cool_down[symbol] = now.replace(
                    second=0, microsecond=0) + timedelta(minutes=5)
            elif bail_out:
                to_sell = True
                sell_reasons.append("bail")
            elif scalp:
                partial_sell = True
                to_sell = True
                sell_reasons.append("scale-out")
            elif bail_on_whipsawed:
                to_sell = True
                partial_sell = False
                limit_sell = True
                sell_reasons.append("bail post whipsawed")

            if to_sell:
                sell_indicators[symbol] = {
                    "rsi": rsi[-3:].tolist(),
                    "movement": movement,
                    "sell_macd": macd[-5:].tolist(),
                    "sell_macd_signal": macd_signal[-5:].tolist(),
                    "vwap": data.vwap,
                    "avg": data.average,
                    "reasons":
                    " AND ".join([str(elem) for elem in sell_reasons]),
                }

                if not partial_sell:
                    if not limit_sell:
                        tlog(
                            f"[{self.name}][{now}] Submitting sell for {position} shares of {symbol} at market with reason:{sell_reasons}"
                        )
                        return (
                            True,
                            {
                                "side": "sell",
                                "qty": str(position),
                                "type": "market",
                            },
                        )
                    else:
                        tlog(
                            f"[{self.name}][{now}] Submitting sell for {position} shares of {symbol} at {data.close} with reason:{sell_reasons}"
                        )
                        return (
                            True,
                            {
                                "side": "sell",
                                "qty": str(position),
                                "type": "limit",
                                "limit_price": str(data.close),
                            },
                        )
                else:
                    qty = int(position / 2) if position > 1 else 1
                    tlog(
                        f"[{self.name}][{now}] Submitting sell for {str(qty)} shares of {symbol} at limit of {data.close }with reason:{sell_reasons}"
                    )
                    return (
                        True,
                        {
                            "side": "sell",
                            "qty": str(qty),
                            "type": "limit",
                            "limit_price": str(data.close),
                        },
                    )

        return False, {}
Esempio n. 26
0
 def test_to_float(self):
     number = Sdf.to_float('12.3')
     assert_that(number, equal_to(12.3))
Esempio n. 27
0
def technical_indicator(df):
    '''
    calcualte technical indicators
    :param data: (df_tec) pandas dataframe
    :return: (df_tec) pandas dataframe
    '''
    
    df_tec = df.copy()
    
    # Volatility Feature
    df_tec['volatility_-5'] = df_tec.Close.ewm(5).std()
    df_tec['volatility_-10'] = df_tec.Close.ewm(10).std()
    df_tec['volatility_-20'] = df_tec.Close.ewm(20).std()
    df_tec['volatility_-60'] = df_tec.Close.ewm(60).std()
    df_tec['volatility_-120'] = df_tec.Close.ewm(120).std()
    
    # use stockstats package to add additional technical inidactors
    stock = Sdf.retype(df_tec.copy())
    # close price change (in percent)
    df_tec['close_-5_r'] = stock['close_-5_r']
    df_tec['close_-10_r'] = stock['close_-10_r']
    df_tec['close_-20_r'] = stock['close_-20_r']
    df_tec['close_-60_r'] = stock['close_-60_r']
    df_tec['close_-120_r'] = stock['close_-120_r']
    # volume change (in percent)
    df_tec['volume_-5_r'] = stock['volume_-5_r']
    df_tec['volume_-10_r'] = stock['volume_-10_r']
    df_tec['volume_-20_r'] = stock['volume_-20_r']
    df_tec['volume_-60_r'] = stock['volume_-60_r']
    df_tec['volume_-120_r'] = stock['volume_-120_r']
    # volume delta against previous day
    df_tec['volume_delta'] = stock['volume_delta']
    # volume max of three days ago, two days ago and yesterday
    df_tec['volume_-3,-2,-1_max'] = stock['volume_-3,-2,-1_max']
    df_tec['volume_-10_max_r'] = stock['volume_-3,-2,-1_max']/stock['volume_-10_max']
    df_tec['volume_-20_max_r'] = stock['volume_-3,-2,-1_max']/stock['volume_-20_max']
    df_tec['volume_-60_max_r'] = stock['volume_-3,-2,-1_max']/stock['volume_-60_max']
    df_tec['volume_-120_max_r'] = stock['volume_-3,-2,-1_max']/stock['volume_-120_max']
    # volume min of three days ago, two days ago and yesterday
    df_tec['volume_-3,-2,-1_min'] = stock['volume_-3,-2,-1_min']
    df_tec['volume_-10_min_r'] = stock['volume_-3,-2,-1_min']/stock['volume_-10_min']
    df_tec['volume_-20_min_r'] = stock['volume_-3,-2,-1_min']/stock['volume_-20_min']
    df_tec['volume_-60_min_r'] = stock['volume_-3,-2,-1_min']/stock['volume_-60_min']
    df_tec['volume_-120_min_r'] = stock['volume_-3,-2,-1_min']/stock['volume_-120_min']
    # KDJ, default to 9 days
    df_tec['kdjk'] = stock['kdjk']
    df_tec['kdjd'] = stock['kdjd']
    df_tec['kdjj'] = stock['kdjj']
    # simple moving average on close price
    df_tec['close_5_sma'] = stock['close_5_sma']
    df_tec['close_10_sma'] = stock['close_10_sma']
    df_tec['close_20_sma'] = stock['close_20_sma']
    df_tec['close_60_sma'] = stock['close_60_sma']
    df_tec['close_120_sma'] = stock['close_120_sma']
    # exponential moving average on close price
    df_tec['close_5_ema'] = stock['close_5_ema']
    df_tec['close_10_ema'] = stock['close_10_ema']
    df_tec['close_20_ema'] = stock['close_20_ema']
    df_tec['close_60_ema'] = stock['close_60_ema']
    df_tec['close_120_ema'] = stock['close_120_ema']
    # DMA, difference of 10 and 50 moving average
    df_tec['dma'] = stock['dma']
    # MACD
    df_tec['macd'] = stock['macd']
    # MACD signal line
    df_tec['macds'] = stock['macds']
    # bolling, including upper band and lower band
    df_tec['boll'] = stock['boll']
    df_tec['boll_ub'] = stock['boll_ub']
    df_tec['boll_lb'] = stock['boll_lb']
    df_tec['boll_ub_r'] = df_tec['Close']/stock['boll_ub']
    df_tec['boll_lb_r'] = df_tec['Close']/stock['boll_lb']
    # 5 days RSI
    df_tec['rsi_5'] = stock['rsi_5']
    df_tec['rsi_10'] = stock['rsi_10']
    df_tec['rsi_20'] = stock['rsi_20']
    df_tec['rsi_60'] = stock['rsi_60']
    df_tec['rsi_120'] = stock['rsi_120']
    df_tec['rsi_10_r'] = stock['rsi_1']/stock['rsi_10']
    df_tec['rsi_20_r'] = stock['rsi_1']/stock['rsi_20']
    df_tec['rsi_60_r'] = stock['rsi_1']/stock['rsi_60']
    df_tec['rsi_120_r'] = stock['rsi_1']/stock['rsi_120']
    # CCI, default to 14 days
    df_tec['cci_5'] = stock['cci_5']
    df_tec['cci_10'] = stock['cci_10']
    df_tec['cci_20'] = stock['cci_20']
    df_tec['cci_60'] = stock['cci_60']
    df_tec['cci_120'] = stock['cci_120']
    # DX, 30 days of +DI and -DI
    df_tec['dx_5'] = stock['dx_5']
    df_tec['dx_10'] = stock['dx_10']
    df_tec['dx_20'] = stock['dx_20']
    df_tec['dx_60'] = stock['dx_60']
    df_tec['dx_120'] = stock['dx_120']
    # VR, default to 26 days
    df_tec['vr_20'] = stock['vr_20']
    df_tec['vr_60'] = stock['vr_60']
    df_tec['vr_120'] = stock['vr_120']
    
    return df_tec
Esempio n. 28
0
 def test_parse_cross_column_xu(self):
     assert_that(Sdf.parse_cross_column('a_xu_b'), contains('a', 'xu', 'b'))
import pickle
import pandas as pd
from stockstats import StockDataFrame
# Load data (deserialize)
with open('nse_50_stock_data.pickle', 'rb') as f:
    stock_prices_dict = pickle.load(f)

df = stock_prices_dict["ABB"]
df = StockDataFrame.retype(df)

tech_indicators = [
    "kdjk", "macd", "rsi_6", "rsi_12", "wr_10", "wr_6", "cci", "adx", "mdi"
]
tech_indicators_df = list(map(lambda x: df[x], tech_indicators))
tech_indicators_df = pd.DataFrame(tech_indicators_df).transpose()

stock_df = pd.concat([df[["close"]], tech_indicators_df], axis=1)

stock_df.to_clipboard()

[keys for keys, vals in stock_prices_dict.items]
import os
Esempio n. 30
0
    def get_sizes(m_df, m_df_spy = None):
        """return size indicators and updown in a row for open close and for candle to candle specific column
            SPY count only mean between open close value

        Args:
            m_df ([type]): [description]
            m_df_spy ([type], optional): [description]. Defaults to None.

        Returns:
            [type]: [description]
        """
          
        if len(m_df_spy) > 0 :
            m_df_spy["oc_mean"] = ((m_df_spy.close + m_df_spy.open)/2)
            
        m_df = sdf.retype(m_df)
        m_df.get("boll")
        m_df = FinI.add_sma(9, m_df)
        m_df = FinI.add_sma(20, m_df)
        m_df = FinI.add_weekday(m_df)
        m_df = FinI.add_week_of_month(m_df)
        m_df = FinI.add_levels(m_df)

        m_df["size_top"] = m_df.apply(lambda row: Utils.calc_perc(
            row.open, row.high) if row.open > row.close else Utils.calc_perc(row.close, row.high), axis=1)


        m_df["size_btm"] = m_df.apply(lambda row: Utils.calc_perc(
            row.low, row.close) if row.open > row.close else Utils.calc_perc(row.low, row.open), axis=1)

        m_df["size_body"] = m_df.apply(lambda row: Utils.calc_perc(row.open, row.close), axis=1)
        m_df["size_sma9"] = m_df.apply(lambda row: Utils.calc_perc(row.sma9, row.close), axis=1)
        m_df["size_sma20"] = m_df.apply(lambda row: Utils.calc_perc(row.sma20, row.close), axis=1)
        m_df["size_boll"] = m_df.apply(
            lambda row: Utils.calc_perc(row.boll, row.close), axis=1)
        m_df["size_boll_ub"] = m_df.apply(
            lambda row: Utils.calc_perc(row.boll_ub, row.close), axis=1)
        m_df["size_boll_lb"] = m_df.apply(
            lambda row: Utils.calc_perc(row.boll_lb, row.close), axis=1)

        m_df["size_top-1"] = m_df.shift(1).size_top

        m_df["size_btm-1"] = m_df.shift(1).size_btm

        m_df["size_body-1"] = m_df.shift(1).size_body

        m_df["size_top-2"] = m_df.shift(2).size_top

        m_df["size_btm-2"] = m_df.shift(2).size_btm

        m_df["size_body-2"] = m_df.shift(2).size_body

        m_df["size_top-3"] = m_df.shift(3).size_top

        m_df["size_btm-3"] = m_df.shift(3).size_btm

        m_df["size_body-3"] = m_df.shift(3).size_body
        
        m_df["size_prev_chng"] = (
            m_df.open - m_df.shift(1).close) / (m_df.shift(1).close/100)

        m_df = FinI.get_up_down_sum_in_row(m_df)
        m_df = FinI.get_green_red_sum_in_row(m_df)

        return m_df, m_df_spy