Esempio n. 1
0
def test_io_3():
    """
    Test FITS movie IO.
    """
    movie_h = 50
    movie_w = 40
    movie_l = 10

    data = numpy.random.randint(0, 60000,
                                (movie_h, movie_w)).astype(numpy.uint16)

    movie_name = storm_analysis.getPathOutputTest("test_dataio.fits")

    # Write FITS movie.
    wr = datawriter.inferWriter(movie_name)
    for i in range(movie_l):
        wr.addFrame(data)
    wr.close()

    # Read & check.
    rd = datareader.inferReader(movie_name)
    [mw, mh, ml] = rd.filmSize()

    assert (mh == movie_h)
    assert (mw == movie_w)
    assert (ml == movie_l)
    assert (numpy.allclose(data, rd.loadAFrame(0)))
Esempio n. 2
0
def test_io_3():
    """
    Test FITS movie IO.
    """
    movie_h = 50
    movie_w = 40
    movie_l = 10
    
    data = numpy.random.randint(0, 60000, (movie_h, movie_w)).astype(numpy.uint16)

    movie_name = storm_analysis.getPathOutputTest("test_dataio.fits")

    # Write FITS movie.
    wr = datawriter.inferWriter(movie_name)
    for i in range(movie_l):
        wr.addFrame(data)
    wr.close()
        
    # Read & check.
    rd = datareader.inferReader(movie_name)
    [mw, mh, ml] = rd.filmSize()

    assert(mh == movie_h)
    assert(mw == movie_w)
    assert(ml == movie_l)
    assert(numpy.allclose(data, rd.loadAFrame(0)))
Esempio n. 3
0
def rollingBallSub(movie_in, movie_out, radius, sigma, offset=100):

    input_movie = datareader.inferReader(movie_in)
    output_dax = datawriter.inferWriter(movie_out)

    rb = RollingBall(radius, sigma)

    for i in range(input_movie.filmSize()[2]):

        if ((i % 10) == 0):
            print("Processing frame", i)

        image = input_movie.loadAFrame(i) - offset

        if False:
            image = image.astype(numpy.float)
            lowpass = scipy.ndimage.filters.gaussian_filter(image, sigma)
            sub = image - lowpass

        else:
            sub = rb.removeBG(image)

        output_dax.addFrame(sub + offset)

    output_dax.close()
Esempio n. 4
0
def rollingBallSub(movie_in, movie_out, radius, sigma, offset = 100):
        
    input_movie = datareader.inferReader(movie_in)
    output_dax = datawriter.inferWriter(movie_out)

    rb = RollingBall(radius, sigma)
        
    for i in range(input_movie.filmSize()[2]):

        if((i%10) == 0):
            print("Processing frame", i)

        image = input_movie.loadAFrame(i) - offset

        if False:
            image = image.astype(numpy.float)
            lowpass = scipy.ndimage.filters.gaussian_filter(image, sigma)
            sub = image - lowpass
            
        else:
            sub = rb.removeBG(image)
            
        output_dax.addFrame(sub + offset)

    output_dax.close()
def saveAsDax(file_name, A, measured_pixels):
    """
    Save A matrix in dax format for visualization purposes.
    """    
    import storm_analysis.sa_library.datawriter as datawriter

    dx = datawriter.inferWriter(file_name)
    ncols = A.shape[1]
    for i in range(A.shape[1]):
        x = numpy.zeros(ncols)
        x[i] = 1.0
        b = numpy.dot(A,x)
        b = b.reshape(measured_pixels,measured_pixels)
        dx.addFrame(10000.0*b)

    dx.close()
Esempio n. 6
0
def test_io_5():
    """
    Test TIF movie IO (1 frame, 1 page).
    """
    movie_h = 50
    movie_w = 40
    movie_l = 1

    movie_name = storm_analysis.getPathOutputTest("test_dataio.tif")

    ## Standard Tiff.
    data = numpy.random.randint(0, 60000,
                                (movie_h, movie_w)).astype(numpy.uint16)

    # Write tif movie.
    wr = datawriter.inferWriter(movie_name)
    for i in range(movie_l):
        wr.addFrame(data)
    wr.close()

    # Read & check.
    rd = datareader.inferReader(movie_name)
    [mw, mh, ml] = rd.filmSize()

    assert (mh == movie_h)
    assert (mw == movie_w)
    assert (ml == movie_l)
    assert (numpy.allclose(data, rd.loadAFrame(0)))

    ## 'imagej' Tiff.
    data = numpy.random.randint(0, 60000, (movie_l, movie_h, movie_w)).astype(
        numpy.uint16)

    movie_name = storm_analysis.getPathOutputTest("test_dataio.tif")

    # Write tif movie.
    with tifffile.TiffWriter(movie_name, imagej=True) as tf:
        tf.save(data, truncate=True)

    # Read & check.
    rd = datareader.inferReader(movie_name)
    [mw, mh, ml] = rd.filmSize()

    assert (mh == movie_h)
    assert (mw == movie_w)
    assert (ml == movie_l)
    assert (numpy.allclose(data[0, :, :], rd.loadAFrame(0)))
Esempio n. 7
0
def test_io_5():
    """
    Test TIF movie IO (1 frame, 1 page).
    """
    movie_h = 50
    movie_w = 40
    movie_l = 1

    movie_name = storm_analysis.getPathOutputTest("test_dataio.tif")
    
    ## Standard Tiff.
    data = numpy.random.randint(0, 60000, (movie_h, movie_w)).astype(numpy.uint16)

    # Write tif movie.
    wr = datawriter.inferWriter(movie_name)
    for i in range(movie_l):
        wr.addFrame(data)
    wr.close()
        
    # Read & check.
    rd = datareader.inferReader(movie_name)
    [mw, mh, ml] = rd.filmSize()

    assert(mh == movie_h)
    assert(mw == movie_w)
    assert(ml == movie_l)
    assert(numpy.allclose(data, rd.loadAFrame(0)))

    ## 'imagej' Tiff.
    data = numpy.random.randint(0, 60000, (movie_l, movie_h, movie_w)).astype(numpy.uint16)

    movie_name = storm_analysis.getPathOutputTest("test_dataio.tif")

    # Write tif movie.
    with tifffile.TiffWriter(movie_name, imagej = True) as tf:
        tf.save(data, truncate = True)

    # Read & check.
    rd = datareader.inferReader(movie_name)
    [mw, mh, ml] = rd.filmSize()

    assert(mh == movie_h)
    assert(mw == movie_w)
    assert(ml == movie_l)
    assert(numpy.allclose(data[0,:,:], rd.loadAFrame(0)))
Esempio n. 8
0
def waveletBGRSub(movie_in, movie_out, wavelet_type, wavelet_level, iterations, threshold, offset = 100):

    input_movie = datareader.inferReader(movie_in)
    output_dax = datawriter.inferWriter(movie_out)

    wbgr = WaveletBGR(wavelet_type = wavelet_type)

    for i in range(input_movie.filmSize()[2]):

        if((i%10) == 0):
            print("Processing frame", i)

        image = input_movie.loadAFrame(i) - offset
        sub = wbgr.removeBG(image,
                            iterations,
                            threshold,
                            wavelet_level)
        output_dax.addFrame(sub + offset)

    output_dax.close()
Esempio n. 9
0
def waveletBGRSub(movie_in,
                  movie_out,
                  wavelet_type,
                  wavelet_level,
                  iterations,
                  threshold,
                  offset=100):

    input_movie = datareader.inferReader(movie_in)
    output_dax = datawriter.inferWriter(movie_out)

    wbgr = WaveletBGR(wavelet_type=wavelet_type)

    for i in range(input_movie.filmSize()[2]):

        if ((i % 10) == 0):
            print("Processing frame", i)

        image = input_movie.loadAFrame(i) - offset
        sub = wbgr.removeBG(image, iterations, threshold, wavelet_level)
        output_dax.addFrame(sub + offset)

    output_dax.close()
Esempio n. 10
0
    def simulate(self, dax_file, bin_file, n_frames, verbosity=1):

        assert (verbosity > 0), "Verbosity must be greater than 1."

        #
        # Initialization.
        #
        movie_data = datawriter.inferWriter(dax_file,
                                            width=self.x_size,
                                            height=self.y_size)
        with saH5Py.SAH5Py(bin_file) as h5:
            h5_data_in = h5.getLocalizations()

        if not h5_data_in:
            print("Warning! No localizations input HDF5 file!")

        out_fname_base = dax_file[:-4]
        h5_data_out = saH5Py.SAH5Py(filename=out_fname_base + "_ref.hdf5",
                                    is_existing=False,
                                    overwrite=True)
        h5_data_out.setMovieInformation(self.x_size, self.y_size, n_frames, "")

        sim_settings = open(out_fname_base + "_sim_params.txt", "w")

        #
        # Create the user-specified class instances that will do
        # most of the actual work of the simulation.
        #
        bg = self.bg_factory(sim_settings, self.x_size, self.y_size,
                             h5_data_in)
        cam = self.cam_factory(sim_settings, self.x_size, self.y_size,
                               h5_data_in)
        drift = None
        if self.drift_factory is not None:
            drift = self.drift_factory(sim_settings, self.x_size, self.y_size,
                                       h5_data_in)

        if h5_data_in:
            pp = self.pphys_factory(sim_settings, self.x_size, self.y_size,
                                    h5_data_in)

        psf = self.psf_factory(sim_settings, self.x_size, self.y_size,
                               h5_data_in)

        sim_settings.write(
            json.dumps({
                "simulation": {
                    "bin_file": bin_file,
                    "x_size": str(self.x_size),
                    "y_size": str(self.y_size)
                }
            }) + "\n")

        h5_data_out.setPixelSize(psf.nm_per_pixel)

        #
        # Generate the simulated movie.
        #
        for i in range(n_frames):

            # Generate the new image.
            image = numpy.zeros((self.x_size, self.y_size))

            if h5_data_in:
                # Get the emitters that are on in the current frame.
                cur_h5 = pp.getEmitters(i)

                if ((i % verbosity) == 0):
                    print("Frame", i, cur_h5['x'].size, "emitters")

                # Dither points x,y values if requested. This is useful for things
                # like looking for pixel level biases in simulated data with gridded
                # localizations.
                #
                if self.dither:
                    cur_h5['x'] += numpy.random.uniform(
                        size=cur_h5['x'].size) - 0.5
                    cur_h5['y'] += numpy.random.uniform(
                        size=cur_h5['y'].size) - 0.5

            # Add background to image.
            image += bg.getBackground(i)

            if h5_data_in:
                # Set 'bg' parameter of the emitters.
                cur_h5 = bg.getEmitterBackground(cur_h5)

                # Apply drift to the localizations.
                if drift is not None:
                    drift.drift(i, cur_h5)

                # Foreground
                image += psf.getPSFs(cur_h5)

            # Camera
            image = cam.readImage(image)

            # Save the image.
            movie_data.addFrame(numpy.transpose(image))

            if h5_data_in:
                # Save the molecule locations.
                h5_data_out.addLocalizations(cur_h5, i)

        movie_data.close()
        h5_data_out.close()
        sim_settings.close()
Esempio n. 11
0
    def simulate(self, dax_file, bin_file, n_frames):

        #
        # Initialization.
        #
        movie_data = datawriter.inferWriter(dax_file,
                                            width = self.x_size,
                                            height = self.y_size)
        with saH5Py.SAH5Py(bin_file) as h5:
            h5_data_in = h5.getLocalizations()

        out_fname_base = dax_file[:-4]
        h5_data_out = saH5Py.SAH5Py(filename = out_fname_base + "_ref.hdf5",
                                    is_existing = False,
                                    overwrite = True)
        h5_data_out.setMovieInformation(self.x_size, self.y_size, n_frames, "")
        
        sim_settings = open(out_fname_base + "_sim_params.txt", "w")

        #
        # Create the user-specified class instances that will do
        # most of the actual work of the simulation.
        #
        bg = self.bg_factory(sim_settings, self.x_size, self.y_size, h5_data_in)
        cam = self.cam_factory(sim_settings, self.x_size, self.y_size, h5_data_in)
        drift = None
        if self.drift_factory is not None:
            drift = self.drift_factory(sim_settings, self.x_size, self.y_size, h5_data_in)
        pp = self.pphys_factory(sim_settings, self.x_size, self.y_size, h5_data_in)
        psf = self.psf_factory(sim_settings, self.x_size, self.y_size, h5_data_in)

        sim_settings.write(json.dumps({"simulation" : {"bin_file" : bin_file,
                                                       "x_size" : str(self.x_size),
                                                       "y_size" : str(self.y_size)}}) + "\n")

        h5_data_out.setPixelSize(psf.nm_per_pixel)

        #
        # Generate the simulated movie.
        #
        for i in range(n_frames):

            # Generate the new image.
            image = numpy.zeros((self.x_size, self.y_size))

            # Get the emitters that are on in the current frame.
            cur_h5 = pp.getEmitters(i)

            print("Frame", i, cur_h5['x'].size, "emitters")

            # Dither points x,y values if requested. This is useful for things
            # like looking for pixel level biases in simulated data with gridded
            # localizations.
            #
            if self.dither:
                cur_h5['x'] += numpy.random.uniform(size = cur_h5['x'].size) - 0.5
                cur_h5['y'] += numpy.random.uniform(size = cur_h5['y'].size) - 0.5

            # Add background to image.
            image += bg.getBackground(i)

            # Set 'bg' parameter of the emitters.
            cur_h5 = bg.getEmitterBackground(cur_h5)

            # Apply drift to the localizations.
            if drift is not None:
                drift.drift(i, cur_h5)
            
            # Foreground
            image += psf.getPSFs(cur_h5)

            # Camera
            image = cam.readImage(image)

            # Save the image.
            movie_data.addFrame(numpy.transpose(image))

            # Save the molecule locations.
            h5_data_out.addLocalizations(cur_h5, i)

        movie_data.close()
        h5_data_out.close()
        sim_settings.close()