Esempio n. 1
0
def makeData():
    index = 1

    # Create HDF5 files for each plane.
    #
    for elt in ["grid_list.hdf5", "random_storm.hdf5"]:
        locs = saH5Py.loadLocalizations(elt)
        locs["color"] = numpy.random.randint(4, size=locs["x"].size)
        zo = locs["z"].copy()

        locs["z"][:] = zo + 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("sim_input_c1_" + elt, locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = zo + 1.0e-3 * settings.z_planes[i]
            saH5Py.saveLocalizations("sim_input_c" + str(i + 1) + "_" + elt,
                                     locs)

    if True:

        # Create a movie for each plane.
        for [bg, photons] in settings.photons:

            # Adjust photons by the number of planes.
            photons = photons / float(len(settings.z_planes))

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            for i in range(4):
                bg_f = lambda s, x, y, i3: background.UniformBackground(
                    s, x, y, i3, photons=bg)
                cam_f = lambda s, x, y, i3: camera.SCMOS(
                    s, x, y, i3, "calib.npy")
                pp_f = lambda s, x, y, i3: photophysics.AlwaysOnMC(
                    s, x, y, i3, color=i, photons=photons)
                psf_f = lambda s, x, y, i3: psf.PupilFunction(
                    s, x, y, i3, settings.pixel_size, [])

                sim = simulate.Simulate(background_factory=bg_f,
                                        camera_factory=cam_f,
                                        photophysics_factory=pp_f,
                                        psf_factory=psf_f,
                                        x_size=settings.x_size,
                                        y_size=settings.y_size)

                sim.simulate(wdir + "/test_c" + str(i + 1) + ".dax",
                             "sim_input_c" + str(i + 1) + "_grid_list.hdf5",
                             settings.n_frames)

            index += 1
Esempio n. 2
0
def makeData():

    index = 1

    # Ideal camera movies.
    #
    if True:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3: background.UniformBackground(
                s, x, y, i3, photons=bg)
            cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, settings.
                                                     camera_offset)
            pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(
                s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3: psf.PupilFunction(
                s, x, y, i3, settings.pixel_size, settings.zmn)

            sim = simulate.Simulate(background_factory=bg_f,
                                    camera_factory=cam_f,
                                    photophysics_factory=pp_f,
                                    psf_factory=psf_f,
                                    x_size=settings.x_size,
                                    y_size=settings.y_size)

            sim.simulate(wdir + "/test.dax", "grid_list.hdf5",
                         settings.n_frames)

            index += 1

    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations
                                                is not None):
        with saH5Py.SAH5Py("test_01/test_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)

        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(
                settings.peak_locations,
                numpy.transpose(
                    numpy.vstack((locs['x'], locs['y'], locs['height'],
                                  locs['background']))))
def makePeakFile(settings):
    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations
                                                is not None):
        with saH5Py.SAH5Py("test_01/test_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)

        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(
                settings.peak_locations,
                numpy.transpose(
                    numpy.vstack((locs['x'], locs['y'], locs['height'],
                                  locs['background']))))
Esempio n. 4
0
def makeData():

    index = 1
    
    # Ideal camera movies.
    #
    if True:
        for [bg, photons] in settings.photons:
            
            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, settings.pixel_size, settings.zmn)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

        
    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations is not None):
        with saH5Py.SAH5Py("test_01/test_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)
        
        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(settings.peak_locations,
                          numpy.transpose(numpy.vstack((locs['x'],
                                                        locs['y'],
                                                        locs['height'],
                                                        locs['background']))))
Esempio n. 5
0
def createMovie(n_frames):    
    bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
    cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, camera_offset)
    pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, signal)
    psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, pixel_size)

    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            x_size = x_size,
                            y_size = y_size)
    
    sim.simulate("test.tif", "sim_locs.hdf5", n_frames)

    # Also create file to use for peak locations.
    with saH5Py.SAH5Py("test_ref.hdf5") as h5:
        locs = h5.getLocalizationsInFrame(0)
        
    saH5Py.saveLocalizations("peak_locs.hdf5", locs)
Esempio n. 6
0
def createMovie(n_frames):
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=bg)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, camera_offset)
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, signal)
    psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, pixel_size)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    sim.simulate("test.tif", "sim_locs.hdf5", n_frames)

    # Also create file to use for peak locations.
    with saH5Py.SAH5Py("test_ref.hdf5") as h5:
        locs = h5.getLocalizationsInFrame(0)

    saH5Py.saveLocalizations("peak_locs.hdf5", locs)
Esempio n. 7
0
def emittersOnGrid(h5_name, nx, ny, sigma, spacing, zrange, zoffset, seed=0):

    if seed is not None:
        random.seed(seed)

    if (nx * ny > 1):
        curz = -zrange
        z_inc = 2.0 * zrange / (nx * ny - 1)
    else:
        curz = 0.0
        z_inc = 0.0

    peaks = {
        "id": numpy.zeros(nx * ny, dtype=numpy.int32),
        "x": numpy.zeros(nx * ny),
        "y": numpy.zeros(nx * ny),
        "z": numpy.zeros(nx * ny),
        "xsigma": sigma * numpy.ones(nx * ny),
        "ysigma": sigma * numpy.ones(nx * ny)
    }

    curx = spacing
    for i in range(nx):
        cury = spacing
        for j in range(ny):
            k = i * ny + j
            peaks['x'][k] = curx + random.random() - 0.5
            peaks['y'][k] = cury + random.random() - 0.5
            peaks['z'][k] = curz + zoffset

            # Record emitter id in the 'id' field.
            peaks['id'][k] = k

            cury += spacing
            curz += z_inc
        curx += spacing

    saH5Py.saveLocalizations(h5_name, peaks)
def emittersOnGrid(h5_name, nx, ny, sigma, spacing, zrange, zoffset, seed = 0):

    if seed is not None:
        random.seed(seed)

    if (nx*ny > 1):
        curz = -zrange
        z_inc = 2.0 * zrange/(nx*ny - 1)
    else:
        curz = 0.0
        z_inc = 0.0

    peaks = {"id" : numpy.zeros(nx*ny, dtype = numpy.int32),
             "x" : numpy.zeros(nx*ny),
             "y" : numpy.zeros(nx*ny),
             "z" : numpy.zeros(nx*ny),
             "xsigma" : sigma * numpy.ones(nx*ny),
             "ysigma" : sigma * numpy.ones(nx*ny)}

    curx = spacing
    for i in range(nx):
        cury = spacing
        for j in range(ny):
            k = i*ny+j
            peaks['x'][k] = curx + random.random() - 0.5
            peaks['y'][k] = cury + random.random() - 0.5
            peaks['z'][k] = curz + zoffset
            
            # Record emitter id in the 'id' field.
            peaks['id'][k] = k
        
            cury += spacing
            curz += z_inc
        curx += spacing

    saH5Py.saveLocalizations(h5_name, peaks)
Esempio n. 9
0
def configure(psf_model, no_splines):
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(psf_model)
    params.toXMLFile("multiplane.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin", "grid_list.hdf5",
        "--nx",
        str(settings.nx), "--ny",
        str(settings.ny), "--spacing", "20", "--zrange",
        str(settings.test_z_range), "--zoffset",
        str(settings.test_z_offset)
    ])

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    subprocess.call([
        "python", sim_path + "emitters_uniform_random.py", "--bin",
        "random_list.hdf5", "--density", "1.0", "--margin",
        str(settings.margin), "--sx",
        str(settings.x_size), "--sy",
        str(settings.y_size), "--zrange",
        str(settings.test_z_range)
    ])

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin", "psf_list.hdf5",
        "--nx", "6", "--ny", "3", "--spacing", "40"
    ])

    # Create sCMOS camera calibration files.
    #
    numpy.save("calib.npy", [
        numpy.zeros(
            (settings.y_size, settings.x_size)) + settings.camera_offset,
        numpy.ones(
            (settings.y_size, settings.x_size)) * settings.camera_variance,
        numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain,
        numpy.ones((settings.y_size, settings.x_size)), 2
    ])

    # Create mapping file.
    with open("map.map", 'wb') as fp:
        pickle.dump(settings.mappings, fp)

    if no_splines:
        return

    multiplane_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/multi_plane/"

    # Create pupil functions for 'pupilfn'.
    if (psf_model == "pupilfn"):
        pupilfn_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/pupilfn/"
        print("Creating pupil functions.")
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", pupilfn_path + "make_pupil_fn.py", "--filename",
                "c" + str(i + 1) + "_pupilfn.pfn", "--size",
                str(settings.psf_size), "--pixel-size",
                str(settings.pixel_size), "--zmn",
                str(settings.pupil_fn), "--z-offset",
                str(-settings.z_planes[i])
            ])

    # Both 'spline' and 'psf_fft' need measured PSFs.
    else:

        # Create localization files for PSF measurement.
        #
        locs = saH5Py.loadLocalizations("psf_list.hdf5")

        for i, z_offset in enumerate(settings.z_planes):
            cx = settings.mappings["0_" + str(i) + "_x"]
            cy = settings.mappings["0_" + str(i) + "_y"]
            locs_temp = {
                "x": locs["x"].copy(),
                "y": locs["y"].copy(),
                "z": locs["z"].copy()
            }
            xi = locs_temp["x"]
            yi = locs_temp["y"]
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            locs_temp["x"] = xf
            locs_temp["y"] = yf
            locs_temp["z"][:] = z_offset

            saH5Py.saveLocalizations("c" + str(i + 1) + "_psf.hdf5", locs_temp)

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.spline_z_range,
                          settings.spline_z_range + 0.001, 0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(
            s, x, y, h5, settings.pixel_size, settings.pupil_fn)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(len(settings.z_planes)):
            sim.simulate("c" + str(i + 1) + "_zcal.dax",
                         "c" + str(i + 1) + "_psf.hdf5", dz.size)

        # Measure the PSF.
        #
        print("Measuring PSFs.")
        psf_fft_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/psf_fft/"
        spliner_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/spliner/"
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", multiplane_path + "psf_zstack.py", "--movie",
                "c" + str(i + 1) + "_zcal.dax", "--bin",
                "c" + str(i + 1) + "_psf.hdf5", "--zstack",
                "c" + str(i + 1) + "_zstack", "--scmos_cal", "calib.npy",
                "--aoi_size",
                str(int(settings.psf_size / 2) + 1)
            ])

    # Measure PSF and calculate spline for Spliner.
    #
    if (psf_model == "spline"):

        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf_normed.psf", "--z_range",
                    str(settings.spline_z_range), "--normalize", "True"
                ])

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf.psf", "--z_range",
                    str(settings.spline_z_range)
                ])

            norm_args = [
                "python", multiplane_path + "normalize_psfs.py", "--psfs",
                "c1_psf.psf"
            ]
            for i in range(len(settings.z_planes) - 1):
                norm_args.append("c" + str(i + 2) + "_psf.psf")
            subprocess.call(norm_args)

        # Measure the spline for Spliner.
        #
        print("Measuring Spline.")
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", spliner_path + "psf_to_spline.py", "--psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--spline",
                "c" + str(i + 1) + "_psf.spline", "--spline_size",
                str(settings.psf_size)
            ])

    # Measure PSF and downsample for PSF FFT.
    #
    elif (psf_model == "psf_fft"):

        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf_normed.psf", "--z_range",
                    str(settings.psf_z_range), "--z_step",
                    str(settings.psf_z_step), "--normalize", "True"
                ])

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf.psf", "--z_range",
                    str(settings.psf_z_range), "--z_step",
                    str(settings.psf_z_step)
                ])

            norm_args = [
                "python", multiplane_path + "normalize_psfs.py", "--psfs",
                "c1_psf.psf"
            ]
            for i in range(len(settings.z_planes) - 1):
                norm_args.append("c" + str(i + 2) + "_psf.psf")
            subprocess.call(norm_args)

        # Downsample the PSF to 1x for PSF FFT.
        print("Downsampling PSF.")
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", psf_fft_path + "downsample_psf.py", "--spliner_psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--psf",
                "c" + str(i + 1) + "_psf_fft.psf", "--pixel-size",
                str(settings.pixel_size)
            ])

    # Calculate Cramer-Rao weighting.
    #
    print("Calculating weights.")
    subprocess.call([
        "python", multiplane_path + "plane_weighting.py", "--background",
        str(settings.photons[0][0]), "--photons",
        str(settings.photons[0][1]), "--output", "weights.npy", "--xml",
        "multiplane.xml", "--no_plots"
    ])
Esempio n. 10
0
def configure():
    # Get relevant paths.
    mm_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/micrometry/"
    mp_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/multi_plane/"
    sp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"

    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")

    # Useful variables
    aoi_size = int(settings.psf_size / 2) + 1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [
            numpy.zeros(
                (settings.y_size, settings.x_size)) + settings.camera_offset,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain, 1
        ])

        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        sim_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call([
            "python", sim_path + "emitters_on_grid.py", "--bin",
            "grid_list.hdf5", "--nx",
            str(settings.nx), "--ny",
            str(settings.ny), "--spacing", "20", "--zrange",
            str(settings.test_z_range), "--zoffset",
            str(settings.test_z_offset)
        ])

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        subprocess.call([
            "python", sim_path + "emitters_uniform_random.py", "--bin",
            "random_storm.hdf5", "--density", "1.0", "--margin",
            str(settings.margin), "--sx",
            str(settings.x_size), "--sy",
            str(settings.y_size), "--zrange",
            str(settings.test_z_range)
        ])

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        subprocess.call([
            "python", sim_path + "emitters_uniform_random.py", "--bin",
            "random_map.hdf5", "--density", "0.0003", "--margin",
            str(settings.margin), "--sx",
            str(settings.x_size), "--sy",
            str(settings.y_size)
        ])

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        sim_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call([
            "python", sim_path + "emitters_on_grid.py", "--bin",
            "psf_list.hdf5", "--nx", "6", "--ny", "3", "--spacing", "40"
        ])

    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make simulated mapping data.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, settings.
                                                    pixel_size)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i + 1) + "_map.dax",
                         "c" + str(i + 1) + "_random_map.hdf5", 1)

        # Analyze simulated mapping data
        #
        for i in range(4):
            scmos.analyze("c" + str(i + 1) + "_map.dax",
                          "c" + str(i + 1) + "_map.hdf5", "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            subprocess.call([
                "python", mm_path + "micrometry.py", "--locs1", "c1_map.hdf5",
                "--locs2", "c" + str(i + 2) + "_map.hdf5", "--results",
                "c1_c" + str(i + 2) + "_map.map", "--no_plots"
            ])

        # Merge mapping.
        #
        subprocess.call([
            "python", mm_path + "merge_maps.py", "--results", "map.map",
            "--maps", "c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"
        ])

        # Print mapping.
        #
        if True:
            print("Mapping is:")
            subprocess.call([
                "python", mp_path + "print_mapping.py", "--mapping", "map.map"
            ])
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_x"],
                                  numpy.array(
                                      [settings.dx * (i + 1), 1.0, 0.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("X mapping difference for channel", i + 1)
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_y"],
                                  numpy.array(
                                      [settings.dy * (i + 1), 0.0, 1.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("Y mapping difference for channel", i + 1)

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05,
                          0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, settings.
                                                      pixel_size, [])

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i + 1) + "_zcal.dax",
                             "c" + str(i + 1) + "_random_map.hdf5", dz.size)

        # Get localizations to use for PSF measurement.
        #
        subprocess.call([
            "python", mp_path + "psf_localizations.py", "--bin",
            "c1_map_ref.hdf5", "--map", "map.map", "--aoi_size",
            str(aoi_size)
        ])

        # Create PSF z stacks.
        #
        for i in range(4):
            subprocess.call([
                "python", mp_path + "psf_zstack.py", "--movie",
                "c" + str(i + 1) + "_zcal.dax", "--bin",
                "c1_map_ref_c" + str(i + 1) + "_psf.hdf5", "--zstack",
                "c" + str(i + 1) + "_zstack", "--scmos_cal", "calib.npy",
                "--aoi_size",
                str(aoi_size)
            ])

        # Measure PSF.
        #
        for i in range(4):
            subprocess.call([
                "python", mp_path + "measure_psf.py", "--zstack",
                "c" + str(i + 1) + "_zstack.npy", "--zoffsets", "z_offset.txt",
                "--psf_name", "c" + str(i + 1) + "_psf_normed.psf",
                "--z_range",
                str(settings.psf_z_range), "--normalize"
            ])

    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            subprocess.call([
                "python", sp_path + "psf_to_spline.py", "--psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--spline",
                "c" + str(i + 1) + "_psf.spline", "--spline_size",
                str(settings.psf_size)
            ])

    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        subprocess.call([
            "python", mp_path + "plane_weighting.py", "--background",
            str(settings.photons[0][0]), "--photons",
            str(settings.photons[0][1]), "--output", "weights.npy", "--xml",
            "multicolor.xml", "--no_plots"
        ])
Esempio n. 11
0
def configure():
    # Get relevant paths.
    mm_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/micrometry/"
    mp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/multi_plane/"
    sp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"

    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")
    
    # Useful variables
    aoi_size = int(settings.psf_size/2)+1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [numpy.zeros((settings.y_size, settings.x_size)) + settings.camera_offset,
                                 numpy.ones((settings.y_size, settings.x_size)) * settings.camera_variance,
                                 numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain,
                                 numpy.ones((settings.y_size, settings.x_size)),
                                 2])
    
        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call(["python", sim_path + "emitters_on_grid.py",
                         "--bin", "grid_list.hdf5",
                         "--nx", str(settings.nx),
                         "--ny", str(settings.ny),
                         "--spacing", "20",
                         "--zrange", str(settings.test_z_range),
                         "--zoffset", str(settings.test_z_offset)])

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                         "--bin", "random_storm.hdf5",
                         "--density", "1.0",
                         "--margin", str(settings.margin),
                         "--sx", str(settings.x_size),
                         "--sy", str(settings.y_size),
                         "--zrange", str(settings.test_z_range)])

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                         "--bin", "random_map.hdf5",
                         "--density", "0.0003",
                         "--margin", str(settings.margin),
                         "--sx", str(settings.x_size),
                         "--sy", str(settings.y_size)])

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call(["python", sim_path + "emitters_on_grid.py",
                         "--bin", "psf_list.hdf5",
                         "--nx", "6",
                         "--ny", "3",
                         "--spacing", "40"])


    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")
    
        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1,4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i+1) + "_random_map.hdf5", locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1,4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i+1) + "_random_map.hdf5", locs)
        
        # Make simulated mapping data.
        # 
        bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
        cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i+1) + "_map.dax", "c" + str(i+1) + "_random_map.hdf5", 1)
    
        # Analyze simulated mapping data
        #
        for i in range(4):
            scmos.analyze("c" + str(i+1) + "_map.dax", "c" + str(i+1) + "_map.hdf5", "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            subprocess.call(["python", mm_path + "micrometry.py",
                             "--locs1", "c1_map.hdf5",
                             "--locs2", "c" + str(i+2) + "_map.hdf5",
                             "--results", "c1_c" + str(i+2) + "_map.map",
                             "--no_plots"])

        # Merge mapping.
        #
        subprocess.call(["python", mm_path + "merge_maps.py",
                         "--results", "map.map",
                         "--maps", "c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"])
        
        # Print mapping.
        #
        if True:
            print("Mapping is:")
            subprocess.call(["python", mp_path + "print_mapping.py",
                             "--mapping", "map.map"])
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i+1) + "_x"], numpy.array([settings.dx*(i+1), 1.0, 0.0]), rtol = 0.05, atol = 0.05):
                print("X mapping difference for channel", i+1)
            if not numpy.allclose(mappings["0_" + str(i+1) + "_y"], numpy.array([settings.dy*(i+1), 0.0, 1.0]), rtol = 0.05, atol = 0.05):
                print("Y mapping difference for channel", i+1)
    

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05, 0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:,2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:,1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
        cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5 : drift.DriftFromFile(s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5 : psf.PupilFunction(s, x, y, h5, settings.pixel_size, [])

        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                drift_factory = drift_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i+1) + "_zcal.dax",
                             "c" + str(i+1) + "_random_map.hdf5",
                             dz.size)
        
        # Get localizations to use for PSF measurement.
        #
        subprocess.call(["python", mp_path + "psf_localizations.py",
                         "--bin", "c1_map_ref.hdf5",
                         "--map", "map.map",
                         "--aoi_size", str(aoi_size)])
    
        # Create PSF z stacks.
        #
        for i in range(4):
            subprocess.call(["python", mp_path + "psf_zstack.py",
                             "--movie", "c" + str(i+1) + "_zcal.dax",
                             "--bin", "c1_map_ref_c" + str(i+1) + "_psf.hdf5",
                             "--zstack", "c" + str(i+1) + "_zstack",
                             "--scmos_cal", "calib.npy",
                             "--aoi_size", str(aoi_size)])

        # Measure PSF.
        #
        for i in range(4):
            subprocess.call(["python", mp_path + "measure_psf.py",
                             "--zstack", "c" + str(i+1) + "_zstack.npy",
                             "--zoffsets", "z_offset.txt",
                             "--psf_name", "c" + str(i+1) + "_psf_normed.psf",
                             "--z_range", str(settings.psf_z_range),
                             "--normalize"])


    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            subprocess.call(["python", sp_path + "psf_to_spline.py",
                             "--psf", "c" + str(i+1) + "_psf_normed.psf",
                             "--spline", "c" + str(i+1) + "_psf.spline",
                             "--spline_size", str(int(settings.psf_size/2))])
        
            
    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        subprocess.call(["python", mp_path + "plane_weighting.py",
                         "--background", str(settings.photons[0][0]),
                         "--photons", str(settings.photons[0][1]),
                         "--output", "weights.npy",
                         "--xml", "multicolor.xml",
                         "--no_plots"])
Esempio n. 12
0
    fdecon.decon(parameters.getAttr("fista_iterations"),
                 parameters.getAttr("fista_lambda"),
                 verbose = True)

    # Save results.
    fx = fdecon.getXVector()
    print(numpy.min(fx), numpy.max(fx))
    with tifffile.TiffWriter(args.output) as tf:
        tf.save(image.astype(numpy.float32))
        for i in range(fx.shape[2]):
            tf.save(fx[:,:,i].astype(numpy.float32))
    
    # Find peaks in the decon data.
    peaks = fdecon.getPeaks(parameters.getAttr("fista_threshold"), 5)

    saH5Py.saveLocalizations(args.output[:-4] + ".hdf5", peaks)

    # Clean up.
    fdecon.cleanup()


#
# The MIT License
#
# Copyright (c) 2016 Zhuang Lab, Harvard University
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
Esempio n. 13
0
def configure(psf_model, no_splines):
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(psf_model)
    params.toXMLFile("multiplane.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call(["python", sim_path + "emitters_on_grid.py",
                     "--bin", "grid_list.hdf5",
                     "--nx", str(settings.nx),
                     "--ny", str(settings.ny),
                     "--spacing", "20",
                     "--zrange", str(settings.test_z_range),
                     "--zoffset", str(settings.test_z_offset)])

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                     "--bin", "random_list.hdf5",
                     "--density", "1.0",
                     "--margin", str(settings.margin),
                     "--sx", str(settings.x_size),
                     "--sy", str(settings.y_size),
                     "--zrange", str(settings.test_z_range)])

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call(["python", sim_path + "emitters_on_grid.py",
                     "--bin", "psf_list.hdf5",
                     "--nx", "6",
                     "--ny", "3",
                     "--spacing", "40"])

    # Create sCMOS camera calibration files.
    #
    numpy.save("calib.npy", [numpy.zeros((settings.y_size, settings.x_size)) + settings.camera_offset,
                             numpy.ones((settings.y_size, settings.x_size)) * settings.camera_variance,
                             numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain,
                             numpy.ones((settings.y_size, settings.x_size)),
                             2])

    # Create mapping file.
    with open("map.map", 'wb') as fp:
        pickle.dump(settings.mappings, fp)

    if no_splines:
        return

    multiplane_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/multi_plane/"

    # Create pupil functions for 'pupilfn'.
    if (psf_model == "pupilfn"):
        pupilfn_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/pupilfn/"
        print("Creating pupil functions.")
        for i in range(len(settings.z_planes)):
            subprocess.call(["python", pupilfn_path + "make_pupil_fn.py",
                             "--filename", "c" + str(i+1) + "_pupilfn.pfn",
                             "--size", str(settings.psf_size),
                             "--pixel-size", str(settings.pixel_size),
                             "--zmn", str(settings.pupil_fn),
                             "--z-offset", str(-settings.z_planes[i])])

    # Both 'spline' and 'psf_fft' need measured PSFs.
    else:
    
        # Create localization files for PSF measurement.
        #
        locs = saH5Py.loadLocalizations("psf_list.hdf5")

        for i, z_offset in enumerate(settings.z_planes):
            cx = settings.mappings["0_" + str(i) + "_x"]
            cy = settings.mappings["0_" + str(i) + "_y"]
            locs_temp = {"x" : locs["x"].copy(),
                         "y" : locs["y"].copy(),
                         "z" : locs["z"].copy()}
            xi = locs_temp["x"]
            yi = locs_temp["y"]
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            locs_temp["x"] = xf
            locs_temp["y"] = yf
            locs_temp["z"][:] = z_offset

            saH5Py.saveLocalizations("c" + str(i+1) + "_psf.hdf5", locs_temp)

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.spline_z_range, settings.spline_z_range + 0.001, 0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:,2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:,1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
        cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5 : drift.DriftFromFile(s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5 : psf.PupilFunction(s, x, y, h5, settings.pixel_size, settings.pupil_fn)

        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                drift_factory = drift_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)

        for i in range(len(settings.z_planes)):
            sim.simulate("c" + str(i+1) + "_zcal.dax",
                         "c" + str(i+1) + "_psf.hdf5",
                         dz.size)
        
        # Measure the PSF.
        #
        print("Measuring PSFs.")
        psf_fft_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/psf_fft/"
        spliner_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"
        for i in range(len(settings.z_planes)):
            subprocess.call(["python", multiplane_path + "psf_zstack.py",
                             "--movie", "c" + str(i+1) + "_zcal.dax",
                             "--bin", "c" + str(i+1) + "_psf.hdf5",
                             "--zstack", "c" + str(i+1) + "_zstack",
                             "--scmos_cal", "calib.npy",
                             "--aoi_size", str(int(settings.psf_size/2)+1)])

    # Measure PSF and calculate spline for Spliner.
    #
    if (psf_model == "spline"):
    
        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                subprocess.call(["python", multiplane_path + "measure_psf.py",
                                 "--zstack", "c" + str(i+1) + "_zstack.npy",
                                 "--zoffsets", "z_offset.txt",
                                 "--psf_name", "c" + str(i+1) + "_psf_normed.psf",
                                 "--z_range", str(settings.spline_z_range),
                                 "--normalize", "True"])

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                subprocess.call(["python", multiplane_path + "measure_psf.py",
                                 "--zstack", "c" + str(i+1) + "_zstack.npy",
                                 "--zoffsets", "z_offset.txt",
                                 "--psf_name", "c" + str(i+1) + "_psf.psf",
                                 "--z_range", str(settings.spline_z_range)])

            norm_args = ["python", multiplane_path + "normalize_psfs.py",
                         "--psfs", "c1_psf.psf"]
            for i in range(len(settings.z_planes)-1):
                norm_args.append("c" + str(i+2) + "_psf.psf")
            subprocess.call(norm_args)

        # Measure the spline for Spliner.
        #
        print("Measuring Spline.")
        for i in range(len(settings.z_planes)):
            subprocess.call(["python", spliner_path + "psf_to_spline.py",
                             "--psf", "c" + str(i+1) + "_psf_normed.psf",
                             "--spline", "c" + str(i+1) + "_psf.spline",
                             "--spline_size", str(int(settings.psf_size/2))])

    # Measure PSF and downsample for PSF FFT.
    #
    elif (psf_model == "psf_fft"):
    
        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                subprocess.call(["python", multiplane_path + "measure_psf.py",
                                 "--zstack", "c" + str(i+1) + "_zstack.npy",
                                 "--zoffsets", "z_offset.txt",
                                 "--psf_name", "c" + str(i+1) + "_psf_normed.psf",
                                 "--z_range", str(settings.psf_z_range),
                                 "--z_step", str(settings.psf_z_step),
                                 "--normalize", "True"])

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                subprocess.call(["python", multiplane_path + "measure_psf.py",
                                 "--zstack", "c" + str(i+1) + "_zstack.npy",
                                 "--zoffsets", "z_offset.txt",
                                 "--psf_name", "c" + str(i+1) + "_psf.psf",
                                 "--z_range", str(settings.psf_z_range),
                                 "--z_step", str(settings.psf_z_step)])

            norm_args = ["python", multiplane_path + "normalize_psfs.py",
                         "--psfs", "c1_psf.psf"]
            for i in range(len(settings.z_planes)-1):
                norm_args.append("c" + str(i+2) + "_psf.psf")
            subprocess.call(norm_args)

    # Calculate Cramer-Rao weighting.
    #
    print("Calculating weights.")
    subprocess.call(["python", multiplane_path + "plane_weighting.py",
                     "--background", str(settings.photons[0][0]),
                     "--photons", str(settings.photons[0][1]),
                     "--output", "weights.npy",
                     "--xml", "multiplane.xml",
                     "--no_plots"])
def makeSampleData(mappings = None):
    # Create sample bead data for mapping measurement.
    #

    # Create randomly located localizations file (for STORM movies).
    #
    print("Creating random localizations.")
    emittersUniformRandom.emittersUniformRandom("random.hdf5", density, margin, x_size, y_size, 0.0)

    # Create mapping, if not specified.
    #
    if mappings is None:
        mappings = {"0_0_x" : numpy.array([0.0, 1.0, 0.0]),
                    "0_0_y" : numpy.array([0.0, 0.0, 1.0]),
                    "0_1_x" : numpy.array([2.0, 1.0, 0.0]),
                    "0_1_y" : numpy.array([5.0, 0.0, 1.0]),
                    "1_0_x" : numpy.array([-2.0, 1.0, 0.0]),
                    "1_0_y" : numpy.array([-5.0, 0.0, 1.0])}

    # Figure out number of planes in the mapping.
    #
    n_planes = 0
    for elt in mappings:
        [i, j] = map(int, elt.split("_")[:2])
        if (i > n_planes):
            n_planes = i

    n_planes += 1
    print(n_planes)
        
    # Create localization files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("random.hdf5")

    for i in range(n_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        locs_temp = {"x" : locs["x"].copy(),
                     "y" : locs["y"].copy(),
                     "z" : locs["z"].copy()}
        xi = locs_temp["x"]
        yi = locs_temp["y"]
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        locs_temp["x"] = xf
        locs_temp["y"] = yf
        
        saH5Py.saveLocalizations("c" + str(i+1) + "_map.hdf5", locs_temp)

    # Create simulated data for PSF measurements.
    #
    bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
    cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
    pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 10000.0)
    psf_f = lambda s, x, y, h5 : psf.PupilFunction(s, x, y, h5, pixel_size, [])

    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            x_size = x_size,
                            y_size = y_size)

    for i in range(n_planes):
        sim.simulate("c" + str(i+1) + "_map.dax", "c" + str(i+1) + "_map.hdf5", 2)
Esempio n. 15
0
def makeData():
    index = 1

    if True:

        # Create .bin files for each plane.
        h5_locs = saH5Py.loadLocalizations("grid_list.hdf5")

        # Load channel to channel mapping file.
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i, z_plane in enumerate(settings.z_planes):
            cx = mappings["0_" + str(i) + "_x"]
            cy = mappings["0_" + str(i) + "_y"]
            xi = h5_locs["x"].copy()
            yi = h5_locs["y"].copy()
            zi = h5_locs["z"].copy()
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            zf = zi + z_plane
            h5_temp = {"x": xf, "y": yf, "z": zf}
            saH5Py.saveLocalizations("sim_input_c" + str(i + 1) + ".hdf5",
                                     h5_temp)

        # Create a movie for each plane.
        for [bg, photons] in settings.photons:

            # Adjust photons by the number of planes.
            photons = photons / float(len(settings.z_planes))

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3: background.UniformBackground(
                s, x, y, i3, photons=bg)
            cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, "calib.npy")
            pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(
                s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3: psf.PupilFunction(
                s, x, y, i3, settings.pixel_size, settings.pupil_fn)

            sim = simulate.Simulate(background_factory=bg_f,
                                    camera_factory=cam_f,
                                    photophysics_factory=pp_f,
                                    psf_factory=psf_f,
                                    x_size=settings.x_size,
                                    y_size=settings.y_size)

            for i in range(len(settings.z_planes)):
                sim.simulate(wdir + "/test_c" + str(i + 1) + ".dax",
                             "sim_input_c" + str(i + 1) + ".hdf5",
                             settings.n_frames)

            index += 1

    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations
                                                is not None):
        with saH5Py.SAH5Py("test_01/test_c1_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)

        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(
                settings.peak_locations,
                numpy.transpose(
                    numpy.vstack((locs['x'], locs['y'], locs['height'],
                                  locs['background']))))
Esempio n. 16
0
def configure():
    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")

    # Useful variables
    aoi_size = int(settings.psf_size / 2) + 1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [
            numpy.zeros(
                (settings.y_size, settings.x_size)) + settings.camera_offset,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain,
            numpy.ones((settings.y_size, settings.x_size)), 2
        ])

        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        emittersOnGrid.emittersOnGrid("grid_list.hdf5", settings.nx,
                                      settings.ny, 1.5, 20,
                                      settings.test_z_range,
                                      settings.test_z_offset)

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        emittersUniformRandom.emittersUniformRandom("random_storm.hdf5", 1.0,
                                                    settings.margin,
                                                    settings.x_size,
                                                    settings.y_size,
                                                    settings.test_z_range)

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        emittersUniformRandom.emittersUniformRandom("random_map.hdf5", 0.0003,
                                                    settings.margin,
                                                    settings.x_size,
                                                    settings.y_size,
                                                    settings.test_z_range)

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        emittersOnGrid.emittersOnGrid("psf_list.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make simulated mapping data.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, settings.
                                                    pixel_size)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i + 1) + "_map.dax",
                         "c" + str(i + 1) + "_random_map.hdf5", 1)

        # Analyze simulated mapping data
        #
        for i in range(4):
            h5_name = "c" + str(i + 1) + "_map.hdf5"
            if os.path.exists(h5_name):
                os.remove(h5_name)
            scmos.analyze("c" + str(i + 1) + "_map.dax", h5_name, "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            micrometry.runMicrometry("c1_map.hdf5",
                                     "c" + str(i + 2) + "_map.hdf5",
                                     "c1_c" + str(i + 2) + "_map.map",
                                     min_size=5.0,
                                     max_size=100.0,
                                     max_neighbors=20,
                                     tolerance=1.0e-2,
                                     no_plots=True)

        # Merge mapping and save results.
        #
        merged_map = mergeMaps.mergeMaps(
            ["c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"])

        with open("map.map", 'wb') as fp:
            pickle.dump(merged_map, fp)

        # Print mapping.
        #
        if True:
            print("Mapping is:")
            printMapping.printMapping("map.map")
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_x"],
                                  numpy.array(
                                      [settings.dx * (i + 1), 1.0, 0.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("X mapping difference for channel", i + 1)
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_y"],
                                  numpy.array(
                                      [settings.dy * (i + 1), 0.0, 1.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("Y mapping difference for channel", i + 1)

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05,
                          0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, settings.
                                                      pixel_size, [])

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i + 1) + "_zcal.dax",
                             "c" + str(i + 1) + "_random_map.hdf5", dz.size)

        # Get localizations to use for PSF measurement.
        #
        psfLocalizations.psfLocalizations("c1_map_ref.hdf5",
                                          "map.map",
                                          aoi_size=aoi_size)

        # Create PSF z stacks.
        #
        for i in range(4):
            psfZStack.psfZStack("c" + str(i + 1) + "_zcal.dax",
                                "c1_map_ref_c" + str(i + 1) + "_psf.hdf5",
                                "c" + str(i + 1) + "_zstack",
                                aoi_size=aoi_size)

        # Measure PSF.
        #
        for i in range(4):
            mpMeasurePSF.measurePSF("c" + str(i + 1) + "_zstack.npy",
                                    "z_offset.txt",
                                    "c" + str(i + 1) + "_psf_normed.psf",
                                    z_range=settings.psf_z_range,
                                    normalize=True)

    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            psfToSpline.psfToSpline("c" + str(i + 1) + "_psf_normed.psf",
                                    "c" + str(i + 1) + "_psf.spline",
                                    int(settings.psf_size / 2))

    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        planeWeighting.runPlaneWeighting("multicolor.xml",
                                         "weights.npy",
                                         [settings.photons[0][0]],
                                         settings.photons[0][1],
                                         no_plots=True)
Esempio n. 17
0
def configure(psf_model, no_splines):
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(psf_model)
    params.toXMLFile("multiplane.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    emittersOnGrid.emittersOnGrid("grid_list.hdf5", settings.nx, settings.ny,
                                  1.5, 20, settings.test_z_range,
                                  settings.test_z_offset)

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    emittersUniformRandom.emittersUniformRandom("random_list.hdf5", 1.0,
                                                settings.margin,
                                                settings.x_size,
                                                settings.y_size,
                                                settings.test_z_range)

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("psf_list.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    # Create sCMOS camera calibration files.
    #
    numpy.save("calib.npy", [
        numpy.zeros(
            (settings.y_size, settings.x_size)) + settings.camera_offset,
        numpy.ones(
            (settings.y_size, settings.x_size)) * settings.camera_variance,
        numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain,
        numpy.ones((settings.y_size, settings.x_size)), 2
    ])

    # Create mapping file.
    with open("map.map", 'wb') as fp:
        pickle.dump(settings.mappings, fp)

    if no_splines:
        return

    # Create pupil functions for 'pupilfn'.
    if (psf_model == "pupilfn"):
        print("Creating pupil functions.")
        for i in range(len(settings.z_planes)):
            makePupilFn.makePupilFunction("c" + str(i + 1) + "_pupilfn.pfn",
                                          settings.psf_size,
                                          settings.pixel_size * 1.0e-3,
                                          settings.pupil_fn,
                                          z_offset=-settings.z_planes[i])

    # Both 'spline' and 'psf_fft' need measured PSFs.
    else:

        # Create localization files for PSF measurement.
        #
        locs = saH5Py.loadLocalizations("psf_list.hdf5")

        for i, z_offset in enumerate(settings.z_planes):
            cx = settings.mappings["0_" + str(i) + "_x"]
            cy = settings.mappings["0_" + str(i) + "_y"]
            locs_temp = {
                "x": locs["x"].copy(),
                "y": locs["y"].copy(),
                "z": locs["z"].copy()
            }
            xi = locs_temp["x"]
            yi = locs_temp["y"]
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            locs_temp["x"] = xf
            locs_temp["y"] = yf
            locs_temp["z"][:] = z_offset

            saH5Py.saveLocalizations("c" + str(i + 1) + "_psf.hdf5", locs_temp)

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.spline_z_range,
                          settings.spline_z_range + 0.001, 0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(
            s, x, y, h5, settings.pixel_size, settings.pupil_fn)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(len(settings.z_planes)):
            sim.simulate("c" + str(i + 1) + "_zcal.dax",
                         "c" + str(i + 1) + "_psf.hdf5", dz.size)

        # Measure the PSF.
        #
        print("Measuring PSFs.")
        for i in range(len(settings.z_planes)):
            psfZStack.psfZStack("c" + str(i + 1) + "_zcal.dax",
                                "c" + str(i + 1) + "_psf.hdf5",
                                "c" + str(i + 1) + "_zstack",
                                aoi_size=int(settings.psf_size / 2 + 1))

    # Measure PSF and calculate spline for Spliner.
    #
    if (psf_model == "spline"):

        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                mpMeasurePSF.measurePSF("c" + str(i + 1) + "_zstack.npy",
                                        "z_offset.txt",
                                        "c" + str(i + 1) + "_psf_normed.psf",
                                        z_range=settings.spline_z_range,
                                        normalize=True)

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                mpMeasurePSF.measurePSF("c" + str(i + 1) + "_zstack.npy",
                                        "z_offset.txt",
                                        "c" + str(i + 1) + "_psf.psf",
                                        z_range=settings.spline_z_range)

            norm_args = ["c1_psf.psf"]
            for i in range(len(settings.z_planes) - 1):
                norm_args.append("c" + str(i + 2) + "_psf.psf")
            normalizePSFs.normalizePSFs(norm_args)

        # Measure the spline for Spliner.
        #
        print("Measuring Spline.")
        for i in range(len(settings.z_planes)):
            psfToSpline.psfToSpline("c" + str(i + 1) + "_psf_normed.psf",
                                    "c" + str(i + 1) + "_psf.spline",
                                    int(settings.psf_size / 2))

    # Measure PSF and downsample for PSF FFT.
    #
    elif (psf_model == "psf_fft"):

        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                mpMeasurePSF.measurePSF("c" + str(i + 1) + "_zstack.npy",
                                        "z_offset.txt",
                                        "c" + str(i + 1) + "_psf_normed.psf",
                                        z_range=settings.spline_z_range,
                                        normalize=True)

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                mpMeasurePSF.measurePSF("c" + str(i + 1) + "_zstack.npy",
                                        "z_offset.txt",
                                        "c" + str(i + 1) + "_psf.psf",
                                        z_range=settings.spline_z_range)

            norm_args = ["c1_psf.psf"]
            for i in range(len(settings.z_planes) - 1):
                norm_args.append("c" + str(i + 2) + "_psf.psf")
            normalizePSFs.normalizePSFs(norm_args)

    # Calculate Cramer-Rao weighting.
    #
    print("Calculating weights.")
    planeWeighting.runPlaneWeighting("multiplane.xml",
                                     "weights.npy", [settings.photons[0][0]],
                                     settings.photons[0][1],
                                     no_plots=True)
def makeSampleData():
    # Create sample bead data for PSF measurement.
    #

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("psf_locs.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    # Create localization files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("psf_locs.hdf5")

    for i, z_offset in enumerate(z_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        locs_temp = {"x" : locs["x"].copy(),
                     "y" : locs["y"].copy(),
                     "z" : locs["z"].copy()}
        xi = locs_temp["x"]
        yi = locs_temp["y"]
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        locs_temp["x"] = xf
        locs_temp["y"] = yf
        locs_temp["z"][:] = z_offset
        
        saH5Py.saveLocalizations("c" + str(i+1) + "_psf.hdf5", locs_temp)

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-spline_z_range, spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:,2] = dz
    numpy.savetxt("drift.txt", drift_data)
    
    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:,1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurements.
    #
    bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
    cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
    drift_f = lambda s, x, y, h5 : drift.DriftFromFile(s, x, y, h5, "drift.txt")
    pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 20000.0)
    psf_f = lambda s, x, y, h5 : psf.PupilFunction(s, x, y, h5, pixel_size, [])

    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            drift_factory = drift_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            x_size = x_size,
                            y_size = y_size)

    for i in range(len(z_planes)):
        sim.simulate("c" + str(i+1) + "_zcal.dax",
                     "c" + str(i+1) + "_psf.hdf5",
                     dz.size)
def makeSampleData():
    # Create sample bead data for PSF measurement.
    #

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("psf_locs.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    # Create localization files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("psf_locs.hdf5")

    for i, z_offset in enumerate(z_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        locs_temp = {
            "x": locs["x"].copy(),
            "y": locs["y"].copy(),
            "z": locs["z"].copy()
        }
        xi = locs_temp["x"]
        yi = locs_temp["y"]
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        locs_temp["x"] = xf
        locs_temp["y"] = yf
        locs_temp["z"][:] = z_offset

        saH5Py.saveLocalizations("c" + str(i + 1) + "_psf.hdf5", locs_temp)

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-spline_z_range, spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurements.
    #
    bg_f = lambda s, x, y, h5: background.UniformBackground(
        s, x, y, h5, photons=10)
    cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
    drift_f = lambda s, x, y, h5: drift.DriftFromFile(s, x, y, h5, "drift.txt")
    pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
    psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, pixel_size, [])

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    for i in range(len(z_planes)):
        sim.simulate("c" + str(i + 1) + "_zcal.dax",
                     "c" + str(i + 1) + "_psf.hdf5", dz.size)
def makeSampleData(mappings=None):
    # Create sample bead data for mapping measurement.
    #

    # Create randomly located localizations file (for STORM movies).
    #
    print("Creating random localizations.")
    emittersUniformRandom.emittersUniformRandom("random.hdf5", density, margin,
                                                x_size, y_size, 0.0)

    # Create mapping, if not specified.
    #
    if mappings is None:
        mappings = {
            "0_0_x": numpy.array([0.0, 1.0, 0.0]),
            "0_0_y": numpy.array([0.0, 0.0, 1.0]),
            "0_1_x": numpy.array([2.0, 1.0, 0.0]),
            "0_1_y": numpy.array([5.0, 0.0, 1.0]),
            "1_0_x": numpy.array([-2.0, 1.0, 0.0]),
            "1_0_y": numpy.array([-5.0, 0.0, 1.0])
        }

    # Figure out number of planes in the mapping.
    #
    n_planes = 0
    for elt in mappings:
        [i, j] = map(int, elt.split("_")[:2])
        if (i > n_planes):
            n_planes = i

    n_planes += 1
    print(n_planes)

    # Create localization files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("random.hdf5")

    for i in range(n_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        locs_temp = {
            "x": locs["x"].copy(),
            "y": locs["y"].copy(),
            "z": locs["z"].copy()
        }
        xi = locs_temp["x"]
        yi = locs_temp["y"]
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        locs_temp["x"] = xf
        locs_temp["y"] = yf

        saH5Py.saveLocalizations("c" + str(i + 1) + "_map.hdf5", locs_temp)

    # Create simulated data for PSF measurements.
    #
    bg_f = lambda s, x, y, h5: background.UniformBackground(
        s, x, y, h5, photons=10)
    cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
    pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 10000.0)
    psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, pixel_size, [])

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    for i in range(n_planes):
        sim.simulate("c" + str(i + 1) + "_map.dax",
                     "c" + str(i + 1) + "_map.hdf5", 2)
Esempio n. 21
0
def makeData():
    index = 1

    if True:

        # Create localization files for each plane.
        h5_locs = saH5Py.loadLocalizations("grid_list.hdf5")
        
        # Load channel to channel mapping file.
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i, z_plane in enumerate(settings.z_planes):
            cx = mappings["0_" + str(i) + "_x"]
            cy = mappings["0_" + str(i) + "_y"]
            xi = h5_locs["x"].copy()
            yi = h5_locs["y"].copy()
            zi = h5_locs["z"].copy()
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            zf = zi + z_plane
            h5_temp = {"x" : xf,
                       "y" : yf,
                       "z" : zf}
            saH5Py.saveLocalizations("sim_input_c" + str(i+1) + ".hdf5", h5_temp)
        
        # Create a movie for each plane.
        for [bg, photons] in settings.photons:

            # Adjust photons by the number of planes.
            photons = photons/float(len(settings.z_planes))

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.SCMOS(s, x, y, i3, "calib.npy")
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, settings.pixel_size, settings.pupil_fn)
            
            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)

            for i in range(len(settings.z_planes)):
                sim.simulate(wdir + "/test_c" + str(i+1) + ".dax",
                             "sim_input_c" + str(i+1) + ".hdf5",
                             settings.n_frames)
        
            index += 1


    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations is not None):
        with saH5Py.SAH5Py("test_01/test_c1_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)
        
        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(settings.peak_locations,
                          numpy.transpose(numpy.vstack((locs['x'],
                                                        locs['y'],
                                                        locs['height'],
                                                        locs['background']))))
Esempio n. 22
0
else:
    curz = 0.0
    z_inc = 0.0

peaks = {
    "id": numpy.zeros(nx * ny, dtype=numpy.int32),
    "x": numpy.zeros(nx * ny),
    "y": numpy.zeros(nx * ny),
    "z": numpy.zeros(nx * ny),
    "xsigma": 1.5 * numpy.ones(nx * ny),
    "ysigma": 1.5 * numpy.ones(nx * ny)
}

curx = spacing
for i in range(nx):
    cury = spacing
    for j in range(ny):
        k = i * ny + j
        peaks['x'][k] = curx + random.random() - 0.5
        peaks['y'][k] = cury + random.random() - 0.5
        peaks['z'][k] = curz + args.zoffset

        # Record emitter id in the 'id' field.
        peaks['id'][k] = k

        cury += spacing
        curz += z_inc
    curx += spacing

saH5Py.saveLocalizations(args.hdf5, peaks)
Esempio n. 23
0
def makeData():

    # Create .bin files for each plane.
    h5_locs = saH5Py.loadLocalizations("grid_list.hdf5")
        
    # Load channel to channel mapping file.
    with open("map.map", 'rb') as fp:
        mappings = pickle.load(fp)

    # Add z offset to reference localizations.
    x = h5_locs["x"].copy()
    y = h5_locs["y"].copy()
    z = h5_locs["z"].copy() + settings.z_planes[0]
    h5_temp = {"x" : x,
               "y" : y,
               "z" : z}
    saH5Py.saveLocalizations("sim_input_c1.hdf5", h5_temp)


    # Create a movie for first plane.
    [bg, photons] = settings.photons

    # Adjust photons by the number of planes.
    photons = photons/float(len(settings.z_planes))

    bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
    cam_f = lambda s, x, y, i3 : camera.SCMOS(s, x, y, i3, "calib.npy")
    pp_f = lambda s, x, y, i3 : photophysics.SimpleSTORM(s, x, y, i3,
                                                         photons = photons,
                                                         on_time = settings.on_time,
                                                         off_time = settings.off_time)
    psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, settings.pixel_size, settings.pupil_fn)

    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            x_size = settings.x_size,
                            y_size = settings.y_size)

    sim.simulate(os.path.join(settings.wdir, "test_c1.dax"),
                 "sim_input_c1.hdf5",
                 settings.n_frames)

    # Create other movies.
    for i in range(1, len(settings.z_planes)):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        z_offset = settings.z_planes[i] - settings.z_planes[0]
            
        pp_f = lambda s, x, y, i3 : photophysics.Duplicate(s, x, y, i3,
                                                           h5_name = os.path.join(settings.wdir, "test_c1_ref.hdf5"),
                                                           cx = cx, cy = cy, z_offset = z_offset)

        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)

        sim.simulate(os.path.join(settings.wdir, "test_c" + str(i+1) + ".dax"),
                     "sim_input_c1.hdf5", # This is not actually used.
                     settings.n_frames)            

    # Remove any old XML files.
    for elt in glob.glob(os.path.join(settings.wdir, "job*.xml")):
        os.remove(elt)
            
    # Make analysis XML files.
    splitAnalysisXML.splitAnalysisXML(settings.wdir, "multiplane.xml", 0, settings.n_frames, settings.divisions)
Esempio n. 24
0
    # Load channel to channel mapping file.
    with open("map.map", 'rb') as fp:
        mappings = pickle.load(fp)

    for i, z_plane in enumerate(settings.z_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        xi = h5_locs["x"].copy()
        yi = h5_locs["y"].copy()
        zi = h5_locs["z"].copy()
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        zf = zi + z_plane
        h5_temp = {"x": xf, "y": yf, "z": zf}
        saH5Py.saveLocalizations("sim_input_c" + str(i + 1) + ".hdf5", h5_temp)

    # Create a movie for each plane.
    for [bg, photons] in settings.photons:

        # Adjust photons by the number of planes.
        photons = photons / float(len(settings.z_planes))

        wdir = "test_{0:02d}".format(index)
        print(wdir)
        if not os.path.exists(wdir):
            os.makedirs(wdir)

        bg_f = lambda s, x, y, i3: background.UniformBackground(
            s, x, y, i3, photons=bg)
        cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, "calib.npy")
Esempio n. 25
0
def makeData(dither = False):
    index = 1

    # Gaussian PSF, uniform background.
    if True:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    dither = dither,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
            
            index += 1

    # Pupil Function PSF.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, settings.pixel_size, [])

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1        

    # Gaussian non-uniform background, always on.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.GaussianBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

    # Uniform background, STORM.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.SimpleSTORM(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "random_list.hdf5", settings.n_frames)
        
            index += 1
        
    # Gaussian non-uniform background, STORM.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.GaussianBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.SimpleSTORM(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "random_list.hdf5", settings.n_frames)
        
            index += 1        

    # Sloped non-uniform background, always on.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.SlopedBackground(s, x, y, i3, slope = 0.4, offset = 10)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    dither = True,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

    # Sine non-uniform background, always on.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.SineBackground(s, x, y, i3, photons = bg, period = 45)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    dither = True,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

        
    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations is not None):
        with saH5Py.SAH5Py("test_01/test_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)
        
        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(settings.peak_locations,
                          numpy.transpose(numpy.vstack((locs['x'],
                                                        locs['y'],
                                                        locs['height'],
                                                        locs['background']))))
def psfLocalizations(h5_filename, mapping_filename, frame = 0, aoi_size = 8, min_height = 0.0):

    # Load localizations & movie size.
    with saH5Py.SAH5Py(h5_filename) as h5:
        locs = h5.getLocalizationsInFrame(frame)
        assert bool(locs), "No localizations found in frame " + str(frame)
        [movie_x, movie_y] = h5.getMovieInformation()[:2]

    # Load mapping.
    mappings = {}
    if os.path.exists(mapping_filename):
        with open(mapping_filename, 'rb') as fp:
            mappings = pickle.load(fp)
    else:
        print("Mapping file not found, single channel data?")

    # Remove localizations that are too dim.
    mask = (locs["height"] > min_height)

    locs_mask = {}
    for elt in ["x", "y"]:
        locs_mask[elt] = locs[elt][mask]
    
    # Remove localizations that are too close to each other.
    [xf, yf] = iaUtilsC.removeNeighbors(locs_mask["x"], locs_mask["y"], 2.0 * aoi_size)

    # Remove localizations that are too close to the edge or
    # outside of the image in any of the channels.
    #
    is_good = numpy.ones(xf.size, dtype = numpy.bool)
    for i in range(xf.size):
        
        # Check in Channel 0.
        if (xf[i] < aoi_size) or (xf[i] + aoi_size >= movie_x):
            is_good[i] = False
            continue
        
        if (yf[i] < aoi_size) or (yf[i] + aoi_size >= movie_y):
            is_good[i] = False
            continue

        # Check other channels.
        for key in mappings:
            if not is_good[i]:
                break
            
            coeffs = mappings[key]
            [ch1, ch2, axis] = key.split("_")
            if (ch1 == "0"):

                if (axis == "x"):
                    xm = coeffs[0] + coeffs[1]*xf[i] + coeffs[2]*yf[i]
                    if (xm < aoi_size) or (xm + aoi_size >= movie_x):
                        is_good[i] = False
                        break

                elif (axis == "y"):
                    ym = coeffs[0] + coeffs[1]*xf[i] + coeffs[2]*yf[i]
                    if (ym < aoi_size) or (ym + aoi_size >= movie_y):
                        is_good[i] = False
                        break

    #
    # Save localizations for each channel.
    #
    gx = xf[is_good]
    gy = yf[is_good]

    basename = os.path.splitext(h5_filename)[0]
    saH5Py.saveLocalizations(basename + "_c1_psf.hdf5", {"x" : gx, "y" : gy})
    
    index = 1
    while ("0_" + str(index) + "_x" in mappings):
        cx = mappings["0_" + str(index) + "_x"]
        cy = mappings["0_" + str(index) + "_y"]
        xm = cx[0] + cx[1] * gx + cx[2] * gy
        ym = cy[0] + cy[1] * gx + cy[2] * gy

        saH5Py.saveLocalizations(basename + "_c" + str(index+1) + "_psf.hdf5", {"x" : xm, "y" : ym})
        
        index += 1

    #
    # Print localizations that were kept.
    #
    print(gx.size, "localizations were kept out of", xf.size)
    for i in range(gx.size):
        print("ch0: {0:.2f} {1:.2f}".format(gx[i], gy[i]))
        index = 1
        while ("0_" + str(index) + "_x" in mappings):
            cx = mappings["0_" + str(index) + "_x"]
            cy = mappings["0_" + str(index) + "_y"]
            xm = cx[0] + cx[1] * gx[i] + cx[2] * gy[i]
            ym = cy[0] + cy[1] * gx[i] + cy[2] * gy[i]
            print("ch" + str(index) + ": {0:.2f} {1:.2f}".format(xm, ym))
            index += 1
        print("")
    print("")