def example_building_mas_01(): if not numpy_found: print("Numpy not available") return # Building the transition matrix using numpy transitions = np.array([ [0, 1, 0, 0, 0], [0.8, 0, 0.2, 0, 0], [0.9, 0, 0, 0.1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1] ], dtype='float64') # Build matrix and define indices of row groups (ascending order) transition_matrix = stormpy.build_sparse_matrix(transitions, [0, 2, 3, 4, 5]) print(transition_matrix) # StateLabeling state_labeling = stormpy.storage.StateLabeling(5) # Add labels state_labels = {'init', 'deadlock'} # Set labeling of states for label in state_labels: state_labeling.add_label(label) state_labeling.add_label_to_state('init', 0) # Choice labeling choice_labeling = stormpy.storage.ChoiceLabeling(6) # Add labels choice_labels = {'alpha', 'beta'} # Set labeling of choices for label in choice_labels: choice_labeling.add_label(label) choice_labeling.add_label_to_choice('alpha', 0) choice_labeling.add_label_to_choice('beta', 1) exit_rates = [0.0, 10.0, 12.0, 1.0, 1.0] markovian_states = stormpy.BitVector(5, [1, 2, 3, 4]) # Collect components components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling, markovian_states=markovian_states) components.choice_labeling = choice_labeling components.exit_rates = exit_rates # Build the model ma = stormpy.storage.SparseMA(components) print(ma)
def test_matrix_from_numpy(self): import numpy as np array = np.array([[0, 2], [3, 4], [0.1, 24], [-0.3, -4]], dtype='float64') matrix = stormpy.build_sparse_matrix(array) # Check matrix dimension assert matrix.nr_rows == array.shape[0] assert matrix.nr_columns == array.shape[1] assert matrix.nr_entries == 8 # Check matrix values for r in range(array.shape[1]): row = matrix.get_row(r) for e in row: assert (e.value() == array[r, e.column])
def example_building_ctmcs_01(): if not numpy_found: print("Numpy not available") return # Building the transition matrix using numpy transitions = np.array([ [0, 1.5, 0, 0], [3, 0, 1.5, 0], [0, 3, 0, 1.5], [0, 0, 3, 0], ], dtype='float64') # Default row groups: [0,1,2,3] transition_matrix = stormpy.build_sparse_matrix(transitions) print(transition_matrix) # State labeling state_labeling = stormpy.storage.StateLabeling(4) state_labels = {'empty', 'init', 'deadlock', 'full'} for label in state_labels: state_labeling.add_label(label) # Adding label to states state_labeling.add_label_to_state('init', 0) state_labeling.add_label_to_state('empty', 0) state_labeling.add_label_to_state('full', 3) # Exit rate for each state exit_rates = [1.5, 4.5, 4.5, 3.0] # Collect components # rate_transitions = True, because the transition values are interpreted as rates components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling, rate_transitions=True) components.exit_rates = exit_rates # Build the model ctmc = stormpy.storage.SparseCtmc(components) print(ctmc)
def test_matrix_from_numpy_row_grouping(self): import numpy as np array = np.array([[0, 2], [3, 4], [0.1, 24], [-0.3, -4]], dtype='float64') matrix = stormpy.build_sparse_matrix(array, row_group_indices=[1, 3]) # Check matrix dimension assert matrix.nr_rows == array.shape[0] assert matrix.nr_columns == array.shape[1] assert matrix.nr_entries == 8 # Check matrix values for r in range(array.shape[1]): row = matrix.get_row(r) for e in row: assert (e.value() == array[r, e.column]) # Check row groups assert matrix.get_row_group_start(0) == 1 assert matrix.get_row_group_end(0) == 3 assert matrix.get_row_group_start(1) == 3 assert matrix.get_row_group_end(1) == 4
def test_build_pomdp(self): import numpy as np nr_states = 10 nr_choices = 34 # Build transition matrix builder = stormpy.SparseMatrixBuilder(rows=0, columns=0, entries=0, force_dimensions=False, has_custom_row_grouping=True, row_groups=0) transitions = np.array( [[0, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]) transition_matrix = stormpy.build_sparse_matrix( transitions, row_group_indices=[0, 1, 5, 9, 13, 17, 21, 25, 29, 33]) # state labeling state_labeling = stormpy.storage.StateLabeling(nr_states) labels = {'deadlock', 'goal', 'init'} for label in labels: state_labeling.add_label(label) state_labeling.add_label_to_state('init', 0) state_labeling.add_label_to_state('goal', 9) # reward models reward_models = {} # Vector representing state-action rewards action_reward = [ 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0 ] reward_models[''] = stormpy.SparseRewardModel( optional_state_action_reward_vector=action_reward) # choice labeling choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices) choice_labels = {'south', 'north', 'west', 'east', 'done'} for label in choice_labels: choice_labeling.add_label(label) choice_labeling.set_choices( 'south', stormpy.BitVector(nr_choices, [4, 8, 12, 16, 20, 24, 28, 32])) choice_labeling.set_choices( 'north', stormpy.BitVector(nr_choices, [3, 7, 11, 15, 19, 23, 27, 31])) choice_labeling.set_choices( 'west', stormpy.BitVector(nr_choices, [2, 6, 10, 14, 18, 22, 26, 30])) choice_labeling.set_choices( 'east', stormpy.BitVector(nr_choices, [1, 5, 9, 13, 17, 21, 25, 29])) choice_labeling.set_choices('done', stormpy.BitVector(nr_choices, [33])) # state valuations manager = stormpy.ExpressionManager() var_x = manager.create_integer_variable(name='x') var_y = manager.create_integer_variable(name='y') var_o = manager.create_integer_variable(name='o') v_builder = stormpy.StateValuationsBuilder() v_builder.add_variable(var_x) v_builder.add_variable(var_y) v_builder.add_variable(var_o) v_builder.add_state(state=0, boolean_values=[], integer_values=[0, 0, 0], rational_values=[]) v_builder.add_state(state=1, boolean_values=[], integer_values=[0, 0, 1], rational_values=[]) v_builder.add_state(state=2, boolean_values=[], integer_values=[0, 1, 1], rational_values=[]) v_builder.add_state(state=3, boolean_values=[], integer_values=[0, 2, 1], rational_values=[]) v_builder.add_state(state=4, boolean_values=[], integer_values=[1, 0, 1], rational_values=[]) v_builder.add_state(state=5, boolean_values=[], integer_values=[1, 1, 1], rational_values=[]) v_builder.add_state(state=6, boolean_values=[], integer_values=[1, 2, 1], rational_values=[]) v_builder.add_state(state=7, boolean_values=[], integer_values=[2, 1, 1], rational_values=[]) v_builder.add_state(state=8, boolean_values=[], integer_values=[2, 2, 1], rational_values=[]) v_builder.add_state(state=9, boolean_values=[], integer_values=[2, 0, 2], rational_values=[]) state_valuations = v_builder.build(nr_states) observations = [1, 0, 0, 0, 0, 0, 0, 0, 0, 2] # Build components, set rate_transitions to False components = stormpy.SparseModelComponents( transition_matrix=transition_matrix, state_labeling=state_labeling, reward_models=reward_models, rate_transitions=False) components.state_valuations = state_valuations components.choice_labeling = choice_labeling # components.choice_origins=choice_origins components.observability_classes = observations # Build POMDP pomdp = stormpy.storage.SparsePomdp(components) assert type(pomdp) is stormpy.SparsePomdp assert not pomdp.supports_parameters # Test transition matrix assert pomdp.nr_choices == nr_choices assert pomdp.nr_states == nr_states assert pomdp.nr_transitions == 41 for e in pomdp.transition_matrix: assert e.value() == 1 or e.value() == 0 or e.value() == 0.125 for state in pomdp.states: assert len(state.actions) <= 4 # Test state labeling assert pomdp.labeling.get_labels() == {'init', 'goal', 'deadlock'} # Test reward models assert len(pomdp.reward_models) == 1 assert not pomdp.reward_models[''].has_state_rewards assert pomdp.reward_models[''].has_state_action_rewards for reward in pomdp.reward_models[''].state_action_rewards: assert reward == 1.0 or reward == 0.0 assert not pomdp.reward_models[''].has_transition_rewards # Test choice labeling assert pomdp.has_choice_labeling() assert pomdp.choice_labeling.get_labels() == { 'east', 'west', 'north', 'south', 'done' } # Test state valuations assert pomdp.has_state_valuations() assert pomdp.state_valuations value_x = [None] * nr_states value_y = [None] * nr_states value_o = [None] * nr_states for s in range(0, pomdp.nr_states): value_x[s] = pomdp.state_valuations.get_integer_value(s, var_x) value_y[s] = pomdp.state_valuations.get_integer_value(s, var_y) value_o[s] = pomdp.state_valuations.get_integer_value(s, var_o) assert value_x == [0, 0, 0, 0, 1, 1, 1, 2, 2, 2] assert value_y == [0, 0, 1, 2, 0, 1, 2, 1, 2, 0] assert value_o == [0, 1, 1, 1, 1, 1, 1, 1, 1, 2] # Test choice origins assert not pomdp.has_choice_origins() assert pomdp.observations == [1, 0, 0, 0, 0, 0, 0, 0, 0, 2]
def test_build_ctmc(self): import numpy as np nr_states = 12 nr_choices = 12 # Build transition_matrix transitions = np.array([[0, 0.5, 0.5, 200, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.5, 200, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0.5, 0, 200, 0, 0, 0, 0, 0], [200, 0, 0, 0, 0, 0, 0.5, 0.5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 200, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0.5, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 200, 0], [0, 200, 0, 0, 0, 0, 0, 0, 0, 0.5, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 200], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype='float64') transition_matrix = stormpy.build_sparse_matrix(transitions) # state labeling state_labeling = stormpy.storage.StateLabeling(nr_states) # Add labels state_labels = {'init', 'deadlock', 'target'} for label in state_labels: state_labeling.add_label(label) # Add labels to states state_labeling.add_label_to_state('init', 0) state_labeling.set_states('target', stormpy.BitVector(nr_states, [5, 8])) # reward models reward_models = {} # vector representing state-action rewards action_reward = [ 0.0, 0.0, 0.0, 0.0, 0.0, 2 / 3, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 ] reward_models['served'] = stormpy.SparseRewardModel( optional_state_action_reward_vector=action_reward) # vector representing state rewards state_reward = [ 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 ] reward_models['waiting'] = stormpy.SparseRewardModel( optional_state_reward_vector=state_reward) # choice labeling choice_labeling = stormpy.storage.ChoiceLabeling(nr_choices) choice_labels = { 'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2' } # Add labels for label in choice_labels: choice_labeling.add_label(label) choice_labeling.set_choices('loop1a', stormpy.BitVector(nr_choices, [0, 2])) choice_labeling.set_choices('loop1b', stormpy.BitVector(nr_choices, [1, 4])) choice_labeling.set_choices('serve1', stormpy.BitVector(nr_choices, [5, 8])) choice_labeling.set_choices('loop2a', stormpy.BitVector(nr_choices, [3, 7])) choice_labeling.set_choices('loop2b', stormpy.BitVector(nr_choices, [6, 9])) choice_labeling.set_choices('serve2', stormpy.BitVector(nr_choices, [10, 11])) # state exit rates exit_rates = [ 201.0, 200.5, 200.5, 201.0, 200.0, 1.5, 200.5, 200.5, 1.0, 200.0, 1.5, 1.0 ] # state valuations manager = stormpy.ExpressionManager() var_s = manager.create_integer_variable(name='s') var_a = manager.create_integer_variable(name='a') var_s1 = manager.create_integer_variable(name='s1') var_s2 = manager.create_integer_variable(name='s2') v_builder = stormpy.StateValuationsBuilder() v_builder.add_variable(var_s) v_builder.add_variable(var_a) v_builder.add_variable(var_s1) v_builder.add_variable(var_s2) v_builder.add_state(state=0, boolean_values=[], integer_values=[1, 0, 0, 0], rational_values=[]) v_builder.add_state(state=1, boolean_values=[], integer_values=[1, 0, 1, 0], rational_values=[]) v_builder.add_state(state=2, boolean_values=[], integer_values=[1, 0, 0, 1], rational_values=[]) v_builder.add_state(state=3, boolean_values=[], integer_values=[2, 0, 0, 0], rational_values=[]) v_builder.add_state(state=4, boolean_values=[], integer_values=[1, 0, 1, 1], rational_values=[]) v_builder.add_state(state=5, boolean_values=[], integer_values=[1, 1, 1, 0], rational_values=[]) v_builder.add_state(state=6, boolean_values=[], integer_values=[2, 0, 0, 1], rational_values=[]) v_builder.add_state(state=7, boolean_values=[], integer_values=[2, 0, 1, 0], rational_values=[]) v_builder.add_state(state=8, boolean_values=[], integer_values=[1, 1, 1, 1], rational_values=[]) v_builder.add_state(state=9, boolean_values=[], integer_values=[2, 0, 1, 1], rational_values=[]) v_builder.add_state(state=10, boolean_values=[], integer_values=[2, 1, 0, 1], rational_values=[]) v_builder.add_state(state=11, boolean_values=[], integer_values=[2, 1, 1, 1], rational_values=[]) state_valuations = v_builder.build(nr_states) # set rate_transitions to True: the transition values are interpreted as rates components = stormpy.SparseModelComponents( transition_matrix=transition_matrix, state_labeling=state_labeling, reward_models=reward_models, rate_transitions=True) components.choice_labeling = choice_labeling components.exit_rates = exit_rates components.state_valuations = state_valuations # Build CTMC ctmc = stormpy.storage.SparseCtmc(components) assert type(ctmc) is stormpy.SparseCtmc assert not ctmc.supports_parameters # Test transition matrix assert ctmc.nr_choices == nr_choices assert ctmc.nr_states == nr_states assert ctmc.nr_transitions == 22 assert ctmc.transition_matrix.nr_columns == nr_states assert ctmc.transition_matrix.nr_rows == nr_choices for e in ctmc.transition_matrix: assert e.value() == 0.5 or e.value() == 0 or e.value( ) == 200 or e.value() == 1.0 for state in ctmc.states: assert len(state.actions) <= 1 # Test state labeling assert ctmc.labeling.get_labels() == {'target', 'init', 'deadlock'} # Test reward models assert len(ctmc.reward_models) == 2 assert not ctmc.reward_models["served"].has_state_rewards assert ctmc.reward_models["served"].has_state_action_rewards assert ctmc.reward_models["served"].state_action_rewards == [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.6666666666666666, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 ] assert not ctmc.reward_models["served"].has_transition_rewards assert ctmc.reward_models["waiting"].has_state_rewards assert not ctmc.reward_models["waiting"].has_state_action_rewards assert ctmc.reward_models["waiting"].state_rewards == [ 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 ] assert not ctmc.reward_models["waiting"].has_transition_rewards # Test choice labeling assert ctmc.has_choice_labeling() assert ctmc.choice_labeling.get_labels() == { 'loop1a', 'loop1b', 'serve1', 'loop2a', 'loop2b', 'serve2' } # Test state valuations assert ctmc.has_state_valuations() assert ctmc.state_valuations value_s = [None] * nr_states value_a = [None] * nr_states value_s1 = [None] * nr_states value_s2 = [None] * nr_states for s in range(0, ctmc.nr_states): value_s[s] = ctmc.state_valuations.get_integer_value(s, var_s) value_a[s] = ctmc.state_valuations.get_integer_value(s, var_a) value_s1[s] = ctmc.state_valuations.get_integer_value(s, var_s1) value_s2[s] = ctmc.state_valuations.get_integer_value(s, var_s2) assert value_s == [1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2] assert value_a == [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1] assert value_s1 == [0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1] assert value_s2 == [0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1] # Test choice origins assert not ctmc.has_choice_origins() # Test exit_rates assert ctmc.exit_rates == [ 201.0, 200.5, 200.5, 201.0, 200.0, 1.5, 200.5, 200.5, 1.0, 200.0, 1.5, 1.0 ]