def test_subtract_mean(): x = StreamArray('x', dtype=float) y = StreamArray('x', dtype=float) subtract_mean(x, window_size=2, step_size=1, y=y) x.extend(np.arange(5, dtype=float)) run() print(recent_values(y))
def test_incremental_PCA(): # GET DATA iris = load_iris() raw_data = iris.data target = iris.target n_samples, n_features = raw_data.shape # RANDOMIZE DATA n_components = 2 perm = np.random.permutation(n_samples) raw_data = raw_data[perm] target = target[perm] # SET UP PLOT plotter = plot_incremental(target=target, colors=['navy', 'turquoise', 'darkorange'], labels=iris.target_names) # RUN ALGORITHM in_stream = StreamArray(dimension=n_features, dtype=float) out_stream = StreamArray(dimension=n_components, dtype=float) incremental_PCA(in_stream, out_stream, n_components, batch_size=30, n_recompute=5, plotter=plotter) in_stream.extend(raw_data) run() print(out_stream.recent[:out_stream.stop])
def test_minus_operator_with_arrays(): x = StreamArray(dtype=int) y = StreamArray(dtype=int) z = y - x x.extend(np.arange(3)) y.extend(np.arange(100, 105, 2)) run() assert np.array_equal(recent_values(z), np.array([ 100, 101, 102]))
def test_map_list_with_arrays(): from op import map_list x = StreamArray(dtype=int) y = StreamArray(dtype=int) def f(A): return 2*A map_list(f, x, y) x.extend(np.arange(5)) run() assert np.array_equal(recent_values(y), 2*np.arange(5))
def pitchshift_stream(sound_array, n, window_size=2**13, h=2**11): """ Changes the pitch of a sound by n semitones. Notes ----- This application has 2 sink_window agents and 3 streams x, y, z. Stretch agent: The first agent gets input x and outputs y which stretches the data in stream x. The stretching code is from Zulko, pianoputer. Speed up agent: The next agent gets input y and outputs z which speeds up y by the specified factor. This agent interpolates the data in y to the number of points determined by factor. """ factor = 2**(1.0 * n / 12.0) f = 1.0/factor # Declare streams x = StreamArray('x', dtype=np.int16) y = StreamArray('y', dtype=np.int16) z = StreamArray('z', dtype=np.int16) # Define the stretch agent stretch_object = Stretch( in_stream=x, out_stream=y, factor=factor, window_size=window_size, h=h) sink_window( func=stretch_object.stretch, in_stream=x, window_size=window_size+h, step_size=int(h*f)) # Define the speedup agent. def f(window, out_stream): indices = np.arange(0, window_size, factor) out_stream.extend( np.int16(np.interp( indices, np.arange(window_size), window))) sink_window(func=f, in_stream=y, window_size=window_size, step_size=window_size, out_stream=z) # Partition sound_array into sound bites. Extend the # input with a sequence of sound bites and run each # sound bite until the sound_array data is finished. sound_bite_size = 2**14 for i in range(0, sound_array.size, sound_bite_size): # sound_bite = sound_array[i:i+sound_bite_size] x.extend(sound_array[i:i+sound_bite_size]) run() # Process any data in sound_array that wasn't processed # in the for loop. x.extend(sound_array[i:]) # Return the result. return z.recent[:z.stop]
def test_sink_3(): x = StreamArray(dtype='int') y = StreamArray() @sink_w def f(window, y): y.append(window[-1] - np.mean(window)) f(x, window_size=2, step_size=1, y=y) x.extend(np.arange(5)) run() assert (np.array_equal (recent_values(y), np.array([0.5, 0.5, 0.5, 0.5])))
def test_minus_operator_with_arrays_and_dimension(): x = StreamArray(dimension=3, dtype=int) y = StreamArray(dimension=3, dtype=int) z = y - x A = np.array([[10, 20, 30], [40, 50, 60]]) B= np.array([[100, 100, 100], [200, 200, 200], [300, 300, 00]]) x.extend(A) y.extend(B) run() assert np.array_equal(recent_values(z), np.array([ [ 90, 80, 70], [160, 150, 140]]))
def test_iot(): x = StreamArray(dtype=int) y = StreamArray(dtype=int) z = StreamArray(dtype=int) u = StreamArray(dtype=int) v = StreamArray(dtype=int) def f(A, y, z): """ Function wrapped by an iot agent. The first parameter 'A' is an array obtained from the input stream of the agent. The other parameters, y and z, are positional arguments (*args) of the function. The function returns a pointer into the input stream. In this example, each call to the function processes the entire input array 'A' and so the function returns len(A). """ y.extend(2 * A) z.extend(3 * A) # Return a pointer into the input array. return len(A) def g(A, u, v): """ Parameters are similar to f. """ u.extend(A + A) v.extend(A**2) return len(A) # Create agents that wrap functions f and g. iot(f, x, y, z) iot(g, x, u, v) # Extend stream x with an array x.extend(np.arange(5, dtype=int)) run() assert np.array_equal(recent_values(y), 2 * np.arange(5, dtype=int)) assert np.array_equal(recent_values(z), 3 * np.arange(5, dtype=int)) assert np.array_equal(recent_values(u), 2 * np.arange(5, dtype=int)) assert np.array_equal(recent_values(v), np.arange(5, dtype=int)**2) # Extend stream x with another array x.extend(np.arange(5, 10, dtype=int)) run() assert np.array_equal(recent_values(y), 2 * np.arange(10, dtype=int)) assert np.array_equal(recent_values(z), 3 * np.arange(10, dtype=int)) assert np.array_equal(recent_values(u), 2 * np.arange(10, dtype=int)) assert np.array_equal(recent_values(v), np.arange(10, dtype=int)**2)
def test_iot_class(): x = StreamArray(name='x', dtype=int) y = StreamArray(name='y', dtype=int) # Create an agent that wraps np.sum sw = sliding_window_test( func=np.sum, in_stream=x, out_stream=y, window_size=5, step_size=2) x.extend(np.arange(10, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([10, 20, 30])) x.extend(np.arange(10, 20, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([10, 20., 30, 40, 50, 60, 70, 80]))
def test_iot_class(): x = StreamArray(dtype=int) y = StreamArray(dtype=float) sw = sliding_window_test(func=np.sum, in_stream=x, out_stream=y, window_size=5, step_size=2) x.extend(np.arange(10, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([10., 20., 30.])) x.extend(np.arange(10, 20, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([10., 20., 30., 40., 50., 60., 70., 80.]))
def test_kmeans_sliding_windows(): print '-----------------------------------------' print print 'testing kmeans sliding windows' num_dimensions = 2 window_size = 12 step_size = 2 num_clusters = 4 in_stream = StreamArray(name='in', dimension=num_dimensions) out_stream = StreamArray(name='out', dimension=window_size, dtype=int) kmeans_sliding_windows(in_stream, out_stream, window_size, step_size, num_clusters) points = np.array([ [+1.0, +1.0], [+1.1, +1.1], [+0.9, +0.9], [+1.0, -1.0], [+1.1, -0.9], [+0.9, -1.1], [-1.0, +1.0], [-1.1, +0.9], [-0.9, +1.1], [-1.0, -1.0], [-1.1, -1.1], [-0.9, -0.9], # NEXT STEP [+1.0, +1.0], [+1.1, +1.1], # NEXT STEP [+0.9, +0.9], [+1.0, -1.0], # NEXT STEP [-1.2, -1.2], [-0.8, -0.8] ]) in_stream.extend(points) Stream.scheduler.step() print print 'num_dimensions = ', num_dimensions print 'window_size = ', window_size print 'step_size = ', step_size print 'num_clusters = ', num_clusters print 'points: ' print points print 'output_stream: ' print recent_values(out_stream)
def test(): x = StreamArray(name='x', dtype=int) y = StreamArray(name='y', dtype=int) z = StreamArray(name='z', dtype=int) multiply(x, y, window_size=10, multiplicand=4) add(x, z, window_size=5, addend=100) x.extend(np.arange(20)) Stream.scheduler.step() print 'Testing multiply' print 'multiplicand = 4' print recent_values(y) print print 'Testing add' print 'addend = 100' print recent_values(z)
def test_iot_merge(): x = StreamArray(dtype=float) y = StreamArray(dtype=float) z = StreamArray(dimension=2, dtype=float) def f(A_list, z): """ f is the function wrapped by an iot_merge agent. A_list is a list of arrays. A_list[j] is the input array obtained from the j-th input stream of the agent that wraps f. z is the positional argument of f. z is an output stream that is extended by f. The agent completes reading n_rows elements of each array in A_list where n_rows is the number of elements in the smallest array. So, the function returns n_rows. """ n_rows = min([len(A) for A in A_list]) n_cols = len(A_list) out = np.column_stack((A_list[0][:n_rows], A_list[1][:n_rows])) z.extend(out) return [n_rows for A in A_list] # Create the agent by wrapping function f. # A_list has two arrays from streams x and y. # z is a keyword argument for f. iot_merge(f, [x, y], z=z) # Extend stream x with [0, 1, 2, 3, 4] x.extend(np.arange(5, dtype=float)) run() assert np.array_equal(recent_values(x), np.array(np.arange(5, dtype=float))) assert np.array_equal(recent_values(x), np.array([0., 1., 2., 3., 4.])) assert np.array_equal(recent_values(y), np.zeros(shape=(0, ), dtype=float)) assert np.array_equal(recent_values(z), np.zeros(shape=(0, 2), dtype=float)) y.extend(np.arange(100, 107, dtype=float)) run() assert np.array_equal(recent_values(x), np.array([0., 1., 2., 3., 4.])) assert np.array_equal(recent_values(y), np.array([100., 101., 102., 103., 104., 105., 106.])) assert np.array_equal( recent_values(z), np.array([[0., 100.], [1., 101.], [2., 102.], [3., 103.], [4., 104.]]))
def test_fmap_with_stream_array(): x = StreamArray(dimension=2, dtype=int) @fmap_e def g(v): return 2*v y = g(x) A = np.array([[1, 10], [2, 20], [3, 30]]) x.extend(A) run() assert np.array_equal( recent_values(y), [[2, 20], [4, 40], [6, 60]]) x.append(np.array([4, 40])) run() assert np.array_equal( recent_values(y), [[2, 20], [4, 40], [6, 60], [8, 80]])
def test_simple_array(): """ Same as test_simple except that StreamArray is used in place of Stream. Create an agent with a single input stream array, x, and a single output stream array, y. The elements of y are twice the corresponding elements of x. """ # Create the streams arrays. x = StreamArray(name='x', dtype=int) y = StreamArray(name='y', dtype=int) def f(array_of_int, s): """ Parameters ---------- f: func the function that is wrapped by iot to create an agent. array_of_int: NumPy array of int s: StreamArray the output stream array of the agent. Returns ------- The function returns len(array_of_int) because the agent has finished processing the entire array. """ s.extend(array_of_int * 2) return len(array_of_int) # Create the agent by wrapping function f. iot(f, x, y) # Extend input stream x of the agent with an array x.extend(np.arange(5, dtype=int)) run() assert np.array_equal( recent_values(y), np.array([0, 2, 4, 6, 8]))
def test_sliding_window_with_startup(): x = StreamArray(dtype=int) y = StreamArray(dtype=int) sw = sliding_window_with_startup(func=np.sum, in_stream=x, out_stream=y, window_size=10, step_size=3) # tests x.extend(np.arange(6, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([3, 15])) x.extend(np.arange(6, 9, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([3, 15, 36])) x.extend(np.arange(9, 15, dtype=int)) run() assert np.array_equal(recent_values(y), np.array([3, 15, 36, 65, 95])) x.extend(np.arange(15, 30, dtype=int)) run() assert np.array_equal( recent_values(y), np.array([3, 15, 36, 65, 95, 125, 155, 185, 215, 245]))
def test_plus_operator_with_arrays_1(): x = StreamArray(dtype=int) y = StreamArray(dtype=int) z = x + y x.extend(np.arange(3)) y.extend(np.arange(100, 105)) run() assert isinstance(recent_values(z), np.ndarray) assert np.array_equal(recent_values(z), np.array([100, 102, 104])) x.extend(np.arange(3, 7)) run() assert np.array_equal(recent_values(z), np.array([ 100, 102, 104, 106, 108])) run() assert np.array_equal(recent_values(z), np.array([ 100, 102, 104, 106, 108]))
def test_plus_operator_with_arrays(): x = StreamArray(dimension=2, dtype=int) y = StreamArray(dimension=2, dtype=int) z = x + y A = np.arange(6).reshape((3, 2)) B = np.arange(100, 110).reshape((5, 2)) x.extend(A) y.extend(B) run() assert isinstance(z, StreamArray) assert np.array_equal(recent_values(z), np.array([ [100, 102], [104, 106], [108, 110]])) C = np.arange(6, 12).reshape((3, 2)) x.extend(C) run() assert np.array_equal(recent_values(z), np.array([ [100, 102], [104, 106], [108, 110], [112, 114], [116, 118]]))
def test_some_merge_agents(): import numpy as np scheduler = Stream.scheduler #---------------------------------------------------- # Declare streams s = Stream('s') t = Stream('t') u = Stream('u') v_stream = Stream('v') x = Stream('x') #---------------------------------------------------- # Define functions def g(lst): return sum(lst) def g_args(lst, multiplier): return sum(lst) * multiplier def general_f(lst, f): return f(lst) def fff(lst, f, addend): return f(lst, addend) def hhh(lst, addend): return sum(lst) + addend #---------------------------------------------------- # Define agents d = zip_map(func=sum, in_streams=[x, u], out_stream=s, name='d') def magnitude(vector): return math.sqrt(sum([w * w for w in vector])) ssssss = Stream() ddd = zip_map(func=magnitude, in_streams=[x, u], out_stream=ssssss) zipxu = zip_stream_f([x, u]) zip_map_xu = zip_map_f(sum, [x, u]) zip_map_xu_merge = Stream('zip map xu merge') zip_map(sum, [x, u], zip_map_xu_merge) zip_map_g_args = zip_map_f(g_args, [x, u], multiplier=2) dd = zip_map(func=general_f, in_streams=[x, u], out_stream=t, name='dd', f=np.mean) zip_map_ss = zip_map_f(np.mean, [x, u]) dddd = zip_map(func=fff, in_streams=[x, u], out_stream=v_stream, name='dddd', f=hhh, addend=10) #---------------------------------------------------- #---------------------------------------------------- # Append values to stream x.extend(list(range(3))) u.extend([10, 15, 18]) scheduler.step() assert recent_values(s) == [10, 16, 20] assert recent_values(zip_map_g_args) == [2 * v for v in recent_values(s)] assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18)] assert recent_values(t) == [5, 8, 10] assert recent_values(zip_map_ss) == [5.0, 8.0, 10.0] assert recent_values(v_stream) == [20, 26, 30] assert recent_values(zip_map_xu) == s.recent[:s.stop] assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge) #---------------------------------------------------- u.append(37) x.extend(list(range(3, 5, 1))) scheduler.step() assert recent_values(s) == [10, 16, 20, 40] assert recent_values(zip_map_g_args) == [2 * v for v in recent_values(s)] assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18), (3, 37)] assert recent_values(t) == [5, 8, 10, 20] assert recent_values(v_stream) == [20, 26, 30, 50] assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge) assert recent_values(ssssss) == [ 10.0, 15.033296378372908, 18.110770276274835, 37.12142238654117 ] #---------------------------------------------------- u.extend([96, 95]) scheduler.step() assert recent_values(s) == [10, 16, 20, 40, 100] assert recent_values(zipxu) == [(0, 10), (1, 15), (2, 18), (3, 37), (4, 96)] assert recent_values(t) == [5, 8, 10, 20, 50] assert recent_values(v_stream) == [20, 26, 30, 50, 110] assert recent_values(zip_map_xu) == recent_values(zip_map_xu_merge) #---------------------------------------------------- # TEST MERGE_ASYNCH AND MIX #---------------------------------------------------- x = Stream('x') y = Stream('y') z = Stream('z') w = Stream('w') def g_asynch(pair): index, value = pair if index == 0: return value * 10 elif index == 1: return value * 2 else: raise Exception() merge_asynch(func=lambda v: v, in_streams=[x, y], out_stream=z) merge_asynch(func=g_asynch, in_streams=[x, y], out_stream=w) mix_z = mix_f([x, y]) scheduler.step() assert recent_values(z) == [] assert recent_values(mix_z) == [] assert recent_values(w) == [] x.append(10) scheduler.step() assert recent_values(z) == [(0, 10)] assert recent_values(mix_z) == recent_values(z) assert recent_values(w) == [100] y.append('A') scheduler.step() assert recent_values(z) == [(0, 10), (1, 'A')] assert recent_values(mix_z) == recent_values(z) assert recent_values(w) == [100, 'AA'] y.append('B') scheduler.step() assert recent_values(z) == [(0, 10), (1, 'A'), (1, 'B')] assert recent_values(mix_z) == recent_values(z) assert recent_values(w) == [100, 'AA', 'BB'] x.append(20) scheduler.step() assert recent_values(z) == [(0, 10), (1, 'A'), (1, 'B'), (0, 20)] assert recent_values(z) == recent_values(mix_z) assert recent_values(w) == [100, 'AA', 'BB', 200] fahrenheit = Stream('fahrenheit') celsius = Stream('celsius') def fahrenheit_and_celsius(pair): index, value = pair if index == 0: return (value - 32.0) / 1.8 elif index == 1: return value else: raise Exception() fahrenheit_stream = Stream('fahrenheit temperatures') celsius_stream = Stream('celsius temperatures') centigrade_stream = Stream('centigrade temperatures') merge_asynch(func=fahrenheit_and_celsius, in_streams=[fahrenheit_stream, celsius_stream], out_stream=centigrade_stream) fahrenheit_stream.append(32) scheduler.step() assert recent_values(centigrade_stream) == [0.0] fahrenheit_stream.append(50) scheduler.step() assert recent_values(centigrade_stream) == [0.0, 10.0] fahrenheit_stream.append(68) scheduler.step() assert recent_values(centigrade_stream) == [0.0, 10.0, 20.0] celsius_stream.append(-10.0) scheduler.step() assert recent_values(centigrade_stream) == [0.0, 10.0, 20.0, -10.0] #---------------------------------------------------- # TEST BLEND #---------------------------------------------------- x = Stream('x') y = Stream('y') z = Stream('z') z_addend = Stream('z_addend') def double(v): return 2 * v def double_add(v, addend): return 2 * v + addend blend(func=double, in_streams=[x, y], out_stream=z) blend(func=double, in_streams=[x, y], out_stream=z_addend) blend_z = blend_f(double, [x, y]) blend_add_z = blend_f(double_add, [x, y], addend=10) x.append(1) scheduler.step() assert recent_values(z) == [2] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] x.extend(list(range(2, 4))) scheduler.step() assert recent_values(z) == [2, 4, 6] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] y.extend(list(range(100, 102))) scheduler.step() assert recent_values(z) == [2, 4, 6, 200, 202] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] x.extend([10, 20]) scheduler.step() assert recent_values(z) == [2, 4, 6, 200, 202, 20, 40] assert recent_values(blend_z) == recent_values(z) assert recent_values(blend_add_z) == [v + 10 for v in recent_values(z)] #---------------------------------------------------- # TEST MANY #---------------------------------------------------- # func operates on a list with one element for each input stream. # func returns a list with one element for each output stream. def f_many(lst): return [sum(lst), sum(lst) + 1] u_stream = Stream(name='u_stream') v_stream = Stream(name='v_stream') w_stream = Stream(name='w_stream') x_stream = Stream(name='x_stream') multi_agent = multi_element(func=f_many, in_streams=[u_stream, v_stream], out_streams=[w_stream, x_stream], name='multi_agent') ww_stream, xx_stream = multi_element_f(func=f_many, in_streams=[u_stream, v_stream], num_out_streams=2) u_stream.extend(list(range(5))) v_stream.extend(list(range(0, 40, 4))) scheduler.step() assert recent_values(w_stream) == [0, 5, 10, 15, 20] assert recent_values(x_stream) == [1, 6, 11, 16, 21] assert recent_values(ww_stream) == recent_values(w_stream) assert recent_values(xx_stream) == recent_values(x_stream) # ------------------------------------ # Test many with args and kwargs # func operates on a list with one element for each input stream. # func returns a list with one element for each output stream. def f_multi_args_kwargs(lst, multiplicand, addend): return sum(lst) * multiplicand, sum(lst) + addend u_args_kwargs_stream = Stream(name='u_args_kwargs_stream') v_args_kwargs_stream = Stream(name='v_args_kwargs_stream') w_args_kwargs_stream = Stream(name='w_args_kwargs_stream') x_args_kwargs_stream = Stream(name='x_args_kwargs_stream') multi_args_kwargs_agent = multi_element( func=f_multi_args_kwargs, in_streams=[u_args_kwargs_stream, v_args_kwargs_stream], out_streams=[w_args_kwargs_stream, x_args_kwargs_stream], name='multi_args_kwargs_agent', multiplicand=2, addend=10) ww_args_kwargs_stream, xx_args_kwargs_stream = multi_element_f( func=f_multi_args_kwargs, in_streams=[u_args_kwargs_stream, v_args_kwargs_stream], num_out_streams=2, multiplicand=2, addend=10) assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) u_args_kwargs_stream.extend(list(range(5))) v_args_kwargs_stream.extend(list(range(0, 40, 4))) scheduler.step() assert recent_values(w_args_kwargs_stream) == [0, 10, 20, 30, 40] assert recent_values(x_args_kwargs_stream) == [10, 15, 20, 25, 30] assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) u_args_kwargs_stream.append(100) v_args_kwargs_stream.extend(list(range(40, 80, 4))) scheduler.step() assert recent_values(w_args_kwargs_stream) == \ [0, 10, 20, 30, 40, 240] assert recent_values(x_args_kwargs_stream) == \ [10, 15, 20, 25, 30, 130] assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) u_args_kwargs_stream.extend([200, 300]) scheduler.step() v_args_kwargs_stream.append(100) scheduler.step() assert recent_values(w_args_kwargs_stream) == \ [0, 10, 20, 30, 40, 240, 448, 656] assert recent_values(x_args_kwargs_stream) == \ [10, 15, 20, 25, 30, 130, 234, 338] assert (recent_values(ww_args_kwargs_stream) == recent_values( w_args_kwargs_stream)) assert (recent_values(xx_args_kwargs_stream) == recent_values( x_args_kwargs_stream)) #---------------------------------------------------- #---------------------------------------------------- # TEST STREAM ARRAY #---------------------------------------------------- #---------------------------------------------------- #---------------------------------------------------- # Test zip_map with StreamArray #---------------------------------------------------- x = StreamArray('x') y = StreamArray('y') z = StreamArray('z') a = StreamArray('a') def sum_array_axis_0(a_list_of_arrays): return np.sum(a_list_of_arrays, axis=0) merge_list(func=sum_array_axis_0, in_streams=[x, y], out_stream=z) def mean_array_axis_0(a_list_of_arrays): return np.mean(a_list_of_arrays, axis=0) zip_map_list(func=mean_array_axis_0, in_streams=[x, y], out_stream=a) x.extend(np.linspace(0.0, 9.0, 10)) scheduler.step() y.extend(np.linspace(0.0, 4.0, 5)) scheduler.step() expected_array = np.sum( [np.linspace(0.0, 4.0, 5), np.linspace(0.0, 4.0, 5)], axis=0) assert isinstance(z, StreamArray) assert np.array_equal(recent_values(z), expected_array) expected_means = np.linspace(0.0, 4.0, 5) assert np.array_equal(recent_values(a), expected_means) #---------------------------------------------------- # Test blend with StreamArray #---------------------------------------------------- x = StreamArray('x') y = StreamArray('y') z = StreamArray('z') a = StreamArray('a') def double(v): return 2 * v def double_add(v, addend): return 2 * v + addend ## blend(func=double, in_streams=[x, y], out_stream=z) ## blend(func=double_add, in_streams=[x, y], out_stream=a, addend=10.0) ## x.append(np.array(1.0)) ## scheduler.step() ## assert np.array_equal(recent_values(z), np.array([2.0])) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) ## x.extend(np.linspace(2.0, 3.0, 2)) ## scheduler.step() ## assert np.array_equal(recent_values(z), np.array([2., 4., 6.])) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) ## y.extend(np.linspace(100.0, 101.0, 2)) ## scheduler.step() ## assert np.array_equal(recent_values(z), [2., 4., 6., 200., 202.]) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) ## x.extend([10., 20.]) ## scheduler.step() ## assert np.array_equal(recent_values(z), [2., 4., 6., 200., 202., 20., 40.]) ## assert np.array_equal(recent_values(a), recent_values(z)+10.0) #---------------------------------------------------- # Test merge_asynch with StreamArray #---------------------------------------------------- x = StreamArray('x') y = StreamArray('y') dt_0 = np.dtype([('time', int), ('value', float)]) z = StreamArray('z', dimension=2) merge_asynch(func=lambda v: v, in_streams=[x, y], out_stream=z) scheduler.step() assert np.array_equal(recent_values(z), np.empty(shape=(0, 2))) x.append(np.array(10.0)) scheduler.step() assert np.array_equal(recent_values(z), np.array([(0, 10.0)])) y.append(np.array(1.0)) scheduler.step() assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.0)]) y.append(np.array(2.0)) scheduler.step() assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.0), (1, 2.0)]) x.append(np.array(20.0)) scheduler.step() assert np.array_equal(recent_values(z), [(0, 10.), (1, 1.), (1, 2.), (0, 20.)]) #---------------------------------------------------------------- # Test window merge agent with no state r = Stream('r') w = Stream('w') x = Stream('x') a = Stream('a') def h(list_of_windows): return sum([sum(window) for window in list_of_windows]) merge_window(func=h, in_streams=[r, w], out_stream=x, window_size=3, step_size=3) merge_stream = merge_window_f(func=h, in_streams=[r, w], window_size=3, step_size=3) #---------------------------------------------------------------- #---------------------------------------------------------------- # Test window merge agent with state def h_with_state(list_of_windows, state): return (sum([sum(window) for window in list_of_windows]) + state, state + 1) merge_window(func=h_with_state, in_streams=[r, w], out_stream=a, window_size=3, step_size=3, state=0) #---------------------------------------------------------------- #---------------------------------------------------------------- r.extend(list(range(16))) scheduler.step() assert recent_values(r) == list(range(16)) assert recent_values(x) == [] assert recent_values(merge_stream) == recent_values(x) assert recent_values(a) == [] w.extend([10, 12, 14, 16, 18]) scheduler.step() assert recent_values(r) == list(range(16)) assert recent_values(w) == [10, 12, 14, 16, 18] assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)] assert recent_values(a) == [39] #---------------------------------------------------------------- r.extend([10, -10, 21, -20]) scheduler.step() assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14)] assert recent_values(a) == [39] #---------------------------------------------------------------- w.append(20) scheduler.step() assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14), (3 + 4 + 5) + (16 + 18 + 20)] assert recent_values(a) == [39, 67] #---------------------------------------------------------------- r.extend([-1, 1, 0]) scheduler.step() assert recent_values(x) == [(0 + 1 + 2) + (10 + 12 + 14), (3 + 4 + 5) + (16 + 18 + 20)] assert recent_values(a) == [39, 67] #---------------------------------------------------------------- # TEST MERGE_WINDOW WITH STREAM ARRAY #---------------------------------------------------------------- x = StreamArray('x', dimension=2) b = StreamArray('b', dimension=2) a = StreamArray('a', dimension=2) #---------------------------------------------------------------- # Test window merge agent with state def h_array(list_of_windows, state): return (sum([sum(window) for window in list_of_windows]) + state, state + 1) merge_window(func=h_array, in_streams=[x, a], out_stream=b, window_size=2, step_size=2, state=0) #---------------------------------------------------------------- x.extend(np.array([[1., 5.], [7., 11.]])) a.extend(np.array([[0., 1.], [2., 3.]])) scheduler.step() np.array_equal(recent_values(b), np.empty(shape=(0, 2))) a.extend(np.array([[0., 1.], [1., 0.]])) scheduler.step() np.array_equal(recent_values(b), np.empty(shape=(0, 2))) x.extend(np.array([[14., 18.], [18., 30.], [30., 38.], [34., 42.]])) scheduler.step() #------------------------------------------------------------------- # TEST MERGE_LIST #------------------------------------------------------------------- # Function g operates on a list of lists, one list for each input # stream, to return a single list for the output stream. x = Stream('x list merge') u = Stream('u list merge') s = Stream('s list merge') def g(list_of_lists): return [sum(snapshot) for snapshot in list(zip(*list_of_lists))] d = merge_list(func=g, in_streams=[x, u], out_stream=s, name='d') ss = merge_list_f(g, [x, u]) x.extend(list(range(4))) u.extend(list(range(10, 20, 2))) scheduler.step() assert recent_values(x) == [0, 1, 2, 3] assert recent_values(u) == [10, 12, 14, 16, 18] assert recent_values(s) == [10, 13, 16, 19] x = StreamArray() y = StreamArray() z = StreamArray(dtype='bool') def f(two_lists): return np.array(two_lists[0]) > np.array(two_lists[1]) merge_list(f, [x, y], z) x.extend(np.array([3.0, 5.0, 7.0])) y.extend(np.array([4.0, 3.0, 10.0])) run()
def test_sink(): import numpy as np scheduler = Stream.scheduler ## ---------------------------------------------- ## # Examples from AssembleSoftware website: KEEP!! ## ---------------------------------------------- ## def print_index(v, state, delimiter): ## print str(state) + delimiter + str(v) ## return state+1 # next state ## s = Stream() ## sink(print_index, s, 0, delimiter=':') ## s.extend(range(100,105)) ## s = Stream() ## def print_index(v, state, delimiter): ## print str(state) + delimiter + str(v) ## return state+1 # next state ## sink(print_index, s, 0, delimiter=':') ## s.extend(range(100,105)) # Set up parameters for call to stream_to_list ## ---------------------------------------------- ## # Finished examples from AssembleSoftware website ## ---------------------------------------------- #----------------------------------------------- # Set up parameters for call to sink print_list = [] print_list_for_array = [] def print_index(v, state, print_list): print_list.append(str(state) + ':' + str(v)) return state + 1 # next state s = Stream('s') s_array = StreamArray('s_array', dtype=int) #----------------------------------------------- # Call sink with initial state of 0 sink(func=print_index, in_stream=s, state=0, print_list=print_list) sink(func=print_index, in_stream=s_array, state=0, print_list=print_list_for_array) s.extend(range(100, 103)) s_array.extend(np.arange(100, 103)) scheduler.step() assert print_list == ['0:100', '1:101', '2:102'] assert print_list_for_array == print_list s.extend(range(200, 203)) scheduler.step() assert print_list == ['0:100', '1:101', '2:102', '3:200', '4:201', '5:202'] #----------------------------------------------- input_stream = Stream('input stream') input_stream_array = StreamArray('input stream array', dtype=int) output_list = [] output_list_array = [] # Call stream_to_list with no function stream_to_list(input_stream, output_list) stream_to_list(input_stream_array, output_list_array) # A test a_test_list = range(100, 105) a_test_array = np.arange(100, 105) input_stream.extend(a_test_list) input_stream_array.extend(a_test_array) scheduler.step() assert output_list == a_test_list assert output_list_array == a_test_list #----------------------------------------------- # test stream to list with a function def h(v, multiplier, addend): return v * multiplier + addend ss = Stream('ss') ss_array = StreamArray('ss_array', dtype=int) l = [] l_array = [] stream_to_list(ss, l, h, multiplier=2, addend=100) stream_to_list(in_stream=ss_array, target_list=l_array, element_function=h, multiplier=2, addend=100) test_list = [3, 23, 14] ss.extend(test_list) ss_array.extend(np.array(test_list)) scheduler.step() assert l == [v * 2 + 100 for v in test_list] assert l_array == l #----------------------------------------------- # test stream to list with a function and state def h(v, state, multiplier, addend): return v * multiplier + addend + state, v + state ss = Stream('ss') ss_array = StreamArray('ss_array', dtype=int) l = [] l_array = [] stream_to_list(ss, l, h, 0, multiplier=2, addend=100) stream_to_list(in_stream=ss_array, target_list=l_array, element_function=h, state=0, multiplier=2, addend=100) test_list = [3, 23, 14] ss.extend(test_list) ss_array.extend(np.array(test_list)) scheduler.step() assert l == [106, 149, 154] assert l_array == l ss = Stream('ss') ss_array = StreamArray('ss_array', dtype=int) l = [] l_array = [] stream_to_list(ss, l, h, 0, multiplier=2, addend=100) stream_to_list(in_stream=ss_array, target_list=l_array, element_function=h, state=0, multiplier=2, addend=100) test_list = range(5) ss.extend(test_list) ss_array.extend(np.array(test_list)) scheduler.step() assert l == [100, 102, 105, 109, 114] assert l_array == l # Test sink # func operates on a single element of the single input stream and does # not return any value. def p(v, lst): lst.append(v) in_stream_sink = Stream('in_stream_sink') a_list = [] b_list = [] sink_agent = sink_element(func=p, in_stream=in_stream_sink, name='sink_agent', lst=a_list) sink(func=p, in_stream=in_stream_sink, lst=b_list) test_list = [1, 13, 29] in_stream_sink.extend(test_list) scheduler.step() assert a_list == test_list assert b_list == test_list # ------------------------------------ # Test sink with state # func operates on a single element of the single input stream and state. # func does not return any value. def p_s(element, state, lst, stream_name): lst.append([stream_name, element]) return state + 1 in_stream_sink_with_state = Stream('s') c_list = [] sink_with_state_agent = sink_element(func=p_s, in_stream=in_stream_sink_with_state, state=0, name='sink_with_state_agent', lst=c_list, stream_name='s') #------------------------------------------------------------------------------ # Test sink as a function with state d_list = [] sink(p_s, in_stream_sink_with_state, state=0, lst=d_list, stream_name='s') in_stream_sink_with_state.extend(range(2)) scheduler.step() assert c_list == [['s', 0], ['s', 1]] assert d_list == c_list # ------------------------------------ # Test sink with side effect # func operates on a single element of the single input stream and state. # func does not return any value. def sink_with_side_effect_func(element, side_effect_list, f): side_effect_list.append(f(element)) return None side_effect_list_0 = [] side_effect_list_1 = [] side_effect_list_2 = [] def ff(element): return element * 2 def fff(element): return element + 10 stm = Stream('stm') sink_with_side_effect_agent_0 = sink_element( func=sink_with_side_effect_func, in_stream=stm, name='sink_with_side_effect_agent_0', side_effect_list=side_effect_list_0, f=ff) sink_with_side_effect_agent_1 = sink_element( func=sink_with_side_effect_func, in_stream=stm, name='sink_with_side_effect_agent_1', side_effect_list=side_effect_list_1, f=fff) def f_stateful(element, state): return element + state, element + state def f_stateful_2(element, state): return element * state, element + state target_stream_to_list_simple = [] stream_to_list(stm, target_stream_to_list_simple) stream_to_list(in_stream=stm, target_list=side_effect_list_2, element_function=lambda v: 2 * v) target_stream_to_list_stateful = [] stream_to_list(in_stream=stm, target_list=target_stream_to_list_stateful, element_function=f_stateful, state=0) target_stream_to_list_stateful_2 = [] stream_to_list(in_stream=stm, target_list=target_stream_to_list_stateful_2, element_function=f_stateful_2, state=0) stream_to_file(stm, 'test1.txt') stream_to_file(stm, 'test2.txt', lambda v: 2 * v) stream_to_file(stm, 'test3.txt', f_stateful, state=0) import Queue queue_1 = Queue.Queue() queue_2 = Queue.Queue() queue_3 = Queue.Queue() stream_to_queue(stm, queue_1) stream_to_queue(stm, queue_2, lambda v: 2 * v) stream_to_queue(stm, queue_3, f_stateful, 0) stm.extend(range(5)) scheduler.step() assert target_stream_to_list_stateful == [0, 1, 3, 6, 10] assert target_stream_to_list_stateful_2 == [0, 0, 2, 9, 24] assert side_effect_list_0 == [0, 2, 4, 6, 8] assert side_effect_list_1 == [10, 11, 12, 13, 14] assert side_effect_list_0 == side_effect_list_2 assert target_stream_to_list_simple == range(5) with open('test1.txt') as the_file: file_contents_integers = [int(v) for v in (the_file.readlines())] assert file_contents_integers == recent_values(stm) with open('test2.txt') as the_file: file_contents_integers = [int(v) for v in (the_file.readlines())] assert file_contents_integers == [2 * v for v in recent_values(stm)] with open('test3.txt') as the_file: file_contents_integers = [int(v) for v in (the_file.readlines())] assert file_contents_integers == [0, 1, 3, 6, 10] os.remove('test1.txt') os.remove('test2.txt') os.remove('test3.txt') def h(v, multiplier, addend): return v * multiplier + addend ss = Stream() stream_to_file(ss, 'test4.txt', h, multiplier=2, addend=100) test_list = [3, 23, 14] ss.extend(test_list) scheduler.step() with open('test4.txt') as the_file: file_contents_integers = [int(v) for v in (the_file.readlines())] assert file_contents_integers == [v * 2 + 100 for v in test_list] os.remove('test4.txt') def h(v, state, multiplier, addend): return v * multiplier + addend + state, v + state ss = Stream() stream_to_file(ss, 'test5.txt', h, 0, multiplier=2, addend=100) test_list = [3, 23, 14] ss.extend(test_list) scheduler.step() with open('test5.txt') as the_file: file_contents_integers = [int(v) for v in (the_file.readlines())] scheduler.step() assert file_contents_integers == [106, 149, 154] os.remove('test5.txt') # ------------------------------------ # Testing stream_to_queue def h(v, state, multiplier, addend): return v * multiplier + addend + state, v + state ss = Stream() queue_4 = Queue.Queue() stream_to_queue(ss, queue_4, h, 0, multiplier=2, addend=100) test_list = [3, 23, 14] ss.extend(test_list) scheduler.step() queue_contents = [] while not queue_4.empty(): queue_contents.append(queue_4.get()) assert queue_contents == [106, 149, 154] # Test with state and keyword arguments def h(v, state, multiplier, addend): return v * multiplier + addend + state, v + state ss = Stream() stream_to_queue(ss, queue_4, h, 0, multiplier=2, addend=100) test_list = [3, 23, 14] ss.extend(test_list) queue_contents = [] scheduler.step() while not queue_4.empty(): queue_contents.append(queue_4.get()) assert queue_contents == [106, 149, 154] # Another test with state and keyword arguments ss = Stream() queue_5 = Queue.Queue() stream_to_queue(ss, queue_5, h, 0, multiplier=2, addend=100) test_list = range(5) ss.extend(test_list) scheduler.step() queue_contents = [] while not queue_5.empty(): queue_contents.append(queue_5.get()) assert queue_contents == [100, 102, 105, 109, 114] # Test stream_to_buffer s = Stream() buf = Buffer(max_size=10) stream_to_buffer(s, buf) test_list = range(5) s.extend(test_list) scheduler.step() assert buf.get_all() == test_list next_test = range(5, 10, 1) s.extend(next_test) scheduler.step() assert buf.read_all() == next_test assert buf.get_all() == next_test s = Stream('s') print_list = [] def f(lst): print_list.extend(lst) sink_window(func=f, in_stream=s, window_size=4, step_size=2) s.extend(range(10)) scheduler.step() assert print_list == [0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9] print 'TEST OF SINK IS SUCCESSFUL' return
def stream_test(): # Numpy type for testing stream array. txyz_dtype = np.dtype([('time', 'int'), ('data', '3float')]) #-------------------------------------------- # Testing StreamArray with positive dimension s = StreamArray(name='s', dimension=3) # Each element of s is a numpy array with with 3 elements # Initially s is empty. So s.stop == 0 assert s.stop == 0 # If num_in_memory is not specified in the declaration for # s, the default value, DEFAULT_NUM_IN_MEMORY, is used. # The length of s.recent is twice num_in_memory assert len(s.recent) == 2 * DEFAULT_NUM_IN_MEMORY # Append a numpy array with 3 zeros to s s.append(np.zeros(3)) assert (s.stop == 1) # Thus s.recent[:s.stop] is an array with 1 row and 3 columns. assert (np.array_equal(s.recent[:s.stop], np.array([[0.0, 0.0, 0.0]]))) # Extend s by an array with 2 rows and 3 columns. The number of # columns must equal the dimension of the stream array. s.extend(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])) # s.stop is incremented to account for the addition of two elements. assert s.stop == 3 # s.recent[:s.stop] includes all the elements added to s. # Thus s.recent[:s.stop] is an array with 3 rows and 3 columns. assert (np.array_equal( s.recent[:s.stop], np.array([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]))) # Extend s by an array with 1 row and 3 columns. The number of # columns must equal the dimension of the stream array. s.extend(np.array([[7.0, 8.0, 9.0]])) # s.stop is incremented to account for the addition of a single row. assert s.stop == 4 # Thus s.recent[:s.stop] is an array with 4 rows and 3 columns. assert np.array_equal( s.recent[:s.stop], np.array([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])) # Note the difference between EXTENDING s with an array consisting # of 1 row and 3 columns, versus APPENDING a rank-1 array consisting # of 3 elements, as in the following example. s.append(np.array([10.0, 11.0, 12.0])) # s.stop is incremented to account for the addition of a single row. assert s.stop == 5 # Thus s.recent[:s.stop] is an array with 5 rows and 3 columns. assert np.array_equal( s.recent[:s.stop], np.array([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]])) #--------------------------------------------------------------- # Testing StreamArray with zero dimension and user-defined dtype t = StreamArray(name='t', dimension=0, dtype=txyz_dtype) # Each element of t is an object of dtype txyz_dtype # t[i]['time'] is an int. # t[i]['data'] is a 3-tuple consisting of 3 floats. # Nothing has been appended to t, and so t.stop == 0. assert (t.stop == 0) # Append an object with 'time' = 1, and 'data' = [0.0, 1.0, 2.0]. t.append(np.array((1, [0.0, 1.0, 2.0]), dtype=txyz_dtype)) # Increase t.stop to account for the element that has just been # added to t. assert t.stop == 1 # t.recent[:t.stop] contains all elements appended to t. assert t.recent[:t.stop] == np.array([(1, [0.0, 1.0, 2.0])], dtype=txyz_dtype) assert t.recent[0]['time'] == np.array(1) assert np.array_equal(t.recent[0]['data'], np.array([0., 1., 2.])) # Append another element to t. t.append(np.array((2, [11.0, 12.0, 13.0]), dtype=txyz_dtype)) # Increase t.stop to account for the element that has just been # added to t. assert (t.stop == 2) # t.recent[:t.stop] contains all elements appended to t. a = np.array([(1, [0.0, 1.0, 2.0]), (2, [11.0, 12.0, 13.0])], dtype=txyz_dtype) assert np.array_equal(t.recent[:t.stop], a) # Extend t by a list of 2 elements each of which consists of # zeroes of txyz_dtype t.extend(np.zeros(2, dtype=txyz_dtype)) # Increase t.stop to account for the element that has just been # added to t. assert (t.stop == 4) # t.recent[:t.stop] contains all elements appended to t. a = np.array([(1, [0.0, 1.0, 2.0]), (2, [11.0, 12.0, 13.0]), (0, [0.0, 0.0, 0.0]), (0, [0.0, 0.0, 0.0])], dtype=txyz_dtype) assert np.array_equal(t.recent[:t.stop], a) #--------------------------------------------------------------- # Testing simple Stream u = Stream('u') v = Stream('v') # Add elements 0, 1, 2, 3 to stream u. u.extend(list(range(4))) # Increase u.stop to account for the element that has just been # added to u. assert u.stop == 4 # u.recent[:t.stop] contains all elements appended to u. assert u.recent[:u.stop] == [0, 1, 2, 3] # No change to v. assert v.stop == 0 # Append element 10 to v and then append the list [40, 50] v.append(10) v.append([40, 50]) # Increase v.stop by 2 to account for the 2 new elements appended # to v. assert v.stop == 2 # v.recent[:v.stop] contains all elements appended to v. assert v.recent[:v.stop] == [10, [40, 50]] # Extend stream v v.extend([60, 70, 80]) # Increase v.stop by 3 to account for the 3 new elements appended # to v. assert v.stop == 5 # v.recent[:v.stop] contains all elements appended to v. assert v.recent[:v.stop] == [10, [40, 50], 60, 70, 80] #------------------------------------------ # Test helper functions: get_contents_after_column_value() # Also test StreamArray y = StreamArray(name='y', dimension=0, dtype=txyz_dtype, num_in_memory=64) # y[i]['time'] is a time (int). # y[i]['data'] is 3-tuple usually with directional data # for x, y, z. # y.recent length is twice num_in_memory assert len(y.recent) == 128 # y has no elements, so y.stop == 0 assert y.stop == 0 # Test data for StreamArray with user-defined data type. test_data = np.zeros(128, dtype=txyz_dtype) assert len(test_data) == 128 # Put random numbers for test_data[i]['time'] and # test_data[i]['data'][xyx] for xyz in [0, 1, 2] for i in range(len(test_data)): test_data[i]['time'] = random.randint(0, 1000) for j in range(3): test_data[i]['data'][j] = random.randint(2000, 9999) # ordered_test_data has time in increasing order. ordered_test_data = np.copy(test_data) for i in range(len(ordered_test_data)): ordered_test_data[i]['time'] = i y.extend(ordered_test_data[:60]) # extending y does not change length of y.recent assert (len(y.recent) == 128) # y.stop increases to accommodate the extension of y by 60. assert (y.stop == 60) # y.recent[:y.stop] now contains all the values put into y. assert np.array_equal(y.recent[:y.stop], ordered_test_data[:60]) assert np.array_equal( y.get_contents_after_column_value(column_number=0, value=50), ordered_test_data[50:60]) assert np.array_equal(y.get_contents_after_time(start_time=50), ordered_test_data[50:60]) assert (y.get_index_for_column_value(column_number=0, value=50) == 50) yz = StreamArray(name='yz', dimension=0, dtype=txyz_dtype, num_in_memory=64) c = np.array((1, [0., 1., 2.]), dtype=txyz_dtype) yz.append(c) assert np.array_equal(yz.recent[:yz.stop], np.array([(1, [0., 1., 2.])], dtype=txyz_dtype)) d = np.array([(2, [3., 4., 5.]), (3, [6., 7., 8.])], dtype=txyz_dtype) yz.extend(d) assert np.array_equal( yz.recent[:yz.stop], np.array([(1, [0., 1., 2.]), (2, [3., 4., 5.]), (3, [6., 7., 8.])], dtype=txyz_dtype)) #------------------------------------------ # TESTING regular Stream class x = Stream(name='x', num_in_memory=8) # The length of x.recent is twice num_in_memory assert (len(x.recent) == 16) # No values have been appended to stream x; so x.stop == 0 assert (x.stop == 0) # Test append x.append(10) # Appending values to x does not change len(x.recent) assert (len(x.recent) == 16) # x.stop increases to accomodate the value appended. assert (x.stop == 1) # x.recent[:x.stop] includes the latest append assert (x.recent[:x.stop] == [10]) x.append(20) assert (len(x.recent) == 16) # x.stop increases to accomodate the value appended. assert (x.stop == 2) # x.recent[:x.stop] includes the latest append assert (x.recent[:2] == [10, 20]) # Test extend x.extend([30, 40]) assert (len(x.recent) == 16) # x.stop increases to accomodate the values extended. assert (x.stop == 4) # x.recent[:x.stop] includes the latest extend assert (x.recent[:x.stop] == [10, 20, 30, 40]) # Checking extension with the empty list. x.extend([]) assert (len(x.recent) == 16) # extending a stream with the empty list does not change # the stream. assert (x.stop == 4) assert (x.recent[:4] == [10, 20, 30, 40]) # Checking extending a stream with a singleton list x.extend([50]) assert (len(x.recent) == 16) assert (x.stop == 5) assert (x.recent[:5] == [10, 20, 30, 40, 50]) # Check registering a reader. # Register a reader called 'a' for stream x starting # to read from x[3] onwards. x.register_reader('a', 3) # Register a reader called 'b' for stream x starting # to read from x[4] onwards. x.register_reader('b', 4) # x.start is a dict which identifies the readers of x # and where they are starting to read from. assert (x.start == {'a': 3, 'b': 4}) x.extend([1, 2, 3, 4, 5]) assert (len(x.recent) == 16) assert (x.stop == 10) assert (x.recent[:10] == [10, 20, 30, 40, 50, 1, 2, 3, 4, 5]) assert (x.start == {'a': 3, 'b': 4}) x.register_reader('a', 7) x.register_reader('b', 7) assert (x.start == {'a': 7, 'b': 7}) #------------------------------------------ # Test helper functions assert (x.get_last_n(n=2) == [4, 5]) v = StreamArray(dimension=(3, 4), dtype=int) v.append(np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]])) a = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) np.array_equal(v.recent[:v.stop], np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]])) v.extend( np.array([[[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]])) np.array_equal( v.recent[:v.stop], np.array([[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]])) u = StreamArray(name='u', dimension=2, dtype=int) a = np.array([0, 1]) u.append(a) np.array_equal(u.recent[:u.stop], np.array([[0, 1]])) u.extend(np.array([[2, 3], [4, 5], [6, 7]])) np.array_equal(u.recent[:u.stop], np.array([[0, 1], [2, 3], [4, 5], [6, 7]])) t = StreamArray('t') t.append(np.array(1.0)) t.extend(np.array([2.0, 3.0])) np.array_equal(t.recent[:t.stop], np.array([1.0, 2.0, 3.0]))
def test_list(): scheduler = Stream.scheduler n = Stream('n') o = Stream('o') p = Stream('p') q = Stream('q') r = Stream('r') s = Stream('s') t = Stream('t') u = Stream('u') v = Stream('v') w = Stream('w') x = Stream('x') y = Stream('y') z = Stream('z') #------------------------------------------------------------------- # Test simple map def simple(lst): return [2 * v for v in lst] a = map_list(func=simple, in_stream=x, out_stream=y, name='a') yy = map_list_f(simple, x) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test map with state # Function that operates on an element and state and returns an # element and state. def f(input_list, state): output_list = [[]] * len(input_list) for i in range(len(input_list)): output_list[i] = input_list[i] + state state += 2 return output_list, state b = map_list(func=f, in_stream=x, out_stream=z, state=0, name='b') zz = map_list_f(f, x, 0) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test map with call streams c = map_list(func=f, in_stream=x, out_stream=v, state=10, call_streams=[w], name='c') #------------------------------------------------------------------- #------------------------------------------------------------------- # Test sink with state def sink_with_state(input_list, output_list): # sink has no output stream. # This function only returns the next state. return output_list.extend(input_list) out_list = [] # In this simple example, out_list will be the same as the input # stream. sink_agent = sink_list(func=sink_with_state, in_stream=x, name='sink_agent', state=out_list) out_list_stream = [] # Function version of the previous agent example sink_list_f(sink_with_state, x, out_list_stream) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test merge # Function that operates on a list of lists def g(list_of_lists): return [sum(snapshot) for snapshot in zip(*list_of_lists)] d = merge_list(func=g, in_streams=[x, u], out_stream=s, name='d') ss = merge_list_f(g, [x, u]) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test split def h(input_list): return [[element + 1 for element in input_list], [element * 2 for element in input_list]] e = split_list(func=h, in_stream=x, out_streams=[r, t], name='e') rr, tt = split_list_f(h, x, num_out_streams=2) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test split with state def h_state(input_list, state): length = len(input_list) output_list_0 = [[]] * length output_list_1 = [[]] * length for i in range(length): output_list_0[i] = input_list[i] + state output_list_1[i] = input_list[i] * state state += 1 return ([output_list_0, output_list_1], state) split_list(func=h_state, in_stream=x, out_streams=[p, q], state=0) pp, qq = split_list_f(h_state, x, num_out_streams=2, state=0) #------------------------------------------------------------------- #------------------------------------------------------------------- # Test many def f_many(list_of_lists): snapshots = zip(*list_of_lists) return [[max(snapshot) for snapshot in snapshots], [min(snapshot) for snapshot in snapshots]] multi_agent = multi_list(func=f_many, in_streams=[x, u], out_streams=[n, o], name='multi_agent') nn, oo = multi_list_f(func=f_many, in_streams=[x, u], num_out_streams=2) #------------------------------------------------------------------- #------------------------------------------------------------------- #------------------------------------------------------------------- x.extend(range(5)) scheduler.step() assert recent_values(x) == range(5) assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(v) == [] assert out_list == range(5) assert out_list == out_list_stream assert recent_values(s) == [] assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(p) == [0, 2, 4, 6, 8] assert recent_values(q) == [0, 1, 4, 9, 16] assert recent_values(n) == [] assert recent_values(o) == [] assert recent_values(y) == recent_values(yy) assert recent_values(z) == recent_values(zz) assert recent_values(s) == recent_values(ss) assert recent_values(r) == recent_values(rr) assert recent_values(t) == recent_values(tt) assert recent_values(p) == recent_values(pp) assert recent_values(q) == recent_values(qq) assert recent_values(n) == recent_values(nn) assert recent_values(o) == recent_values(oo) #------------------------------------------------------------------- #------------------------------------------------------------------- w.append(0) scheduler.step() assert recent_values(x) == range(5) assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(v) == [10, 13, 16, 19, 22] assert out_list == range(5) assert recent_values(s) == [] assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(p) == [0, 2, 4, 6, 8] assert recent_values(q) == [0, 1, 4, 9, 16] assert recent_values(n) == [] assert recent_values(o) == [] assert recent_values(y) == recent_values(yy) assert recent_values(z) == recent_values(zz) assert recent_values(s) == recent_values(ss) assert recent_values(r) == recent_values(rr) assert recent_values(t) == recent_values(tt) assert recent_values(p) == recent_values(pp) assert recent_values(q) == recent_values(qq) assert recent_values(n) == recent_values(nn) assert recent_values(o) == recent_values(oo) #------------------------------------------------------------------- #------------------------------------------------------------------- u.extend([10, 15, 18]) scheduler.step() assert recent_values(s) == [10, 16, 20] assert recent_values(n) == [10, 15, 18] assert recent_values(o) == [0, 1, 2] u.append(37) scheduler.step() assert recent_values(s) == [10, 16, 20, 40] assert recent_values(n) == [10, 15, 18, 37] assert recent_values(o) == [0, 1, 2, 3] u.extend([96, 95]) scheduler.step() assert recent_values(x) == range(5) assert recent_values(y) == [0, 2, 4, 6, 8] assert recent_values(z) == [0, 3, 6, 9, 12] assert recent_values(v) == [10, 13, 16, 19, 22] assert out_list == range(5) assert recent_values(s) == [10, 16, 20, 40, 100] assert recent_values(r) == [1, 2, 3, 4, 5] assert recent_values(t) == [0, 2, 4, 6, 8] assert recent_values(p) == [0, 2, 4, 6, 8] assert recent_values(q) == [0, 1, 4, 9, 16] assert recent_values(n) == [10, 15, 18, 37, 96] assert recent_values(o) == [0, 1, 2, 3, 4] assert recent_values(y) == recent_values(yy) assert recent_values(z) == recent_values(zz) assert recent_values(s) == recent_values(ss) assert recent_values(r) == recent_values(rr) assert recent_values(t) == recent_values(tt) assert recent_values(p) == recent_values(pp) assert recent_values(q) == recent_values(qq) assert recent_values(n) == recent_values(nn) assert recent_values(o) == recent_values(oo) #------------------------------------------------------------------ #------------------------------------------------------------------ # Test NumPy arrays: StreamArray #------------------------------------------------------------------ #------------------------------------------------------------------ # Test list map on StreamArray (dimension is 0). a_stream_array = StreamArray(name='a_stream_array') b_stream_array = StreamArray(name='b_stream_array') def f_np(input_array): return input_array + 1 a_np_agent = map_list(func=f_np, in_stream=a_stream_array, out_stream=b_stream_array, name='a_np_agent') bb_stream_array = map_array_f(f_np, a_stream_array) scheduler.step() assert np.array_equal(recent_values(b_stream_array), np.array([], dtype=np.float64)) assert np.array_equal(recent_values(b_stream_array), recent_values(bb_stream_array)) a_stream_array.extend(np.arange(5.0)) scheduler.step() assert np.array_equal(recent_values(b_stream_array), np.arange(5.0) + 1) assert np.array_equal(recent_values(b_stream_array), recent_values(bb_stream_array)) a_stream_array.extend(np.arange(5.0, 10.0, 1.0)) scheduler.step() assert np.array_equal(recent_values(b_stream_array), np.arange(10.0) + 1) assert np.array_equal(recent_values(b_stream_array), recent_values(bb_stream_array)) # Test list map with state on StreamArray (dimension is 0) c_stream_array = StreamArray(name='c_stream_array') d_stream_array = StreamArray(name='d_stream_array') def f_np_state(input_array, state): return np.cumsum(input_array) + state, np.sum(input_array) b_np_agent = map_list(func=f_np_state, in_stream=c_stream_array, out_stream=d_stream_array, state=0.0, name='b_np_agent') dd_stream_array = map_array_f(f_np_state, c_stream_array, state=0.0) scheduler.step() assert np.array_equal(recent_values(d_stream_array), np.array([], dtype=np.float64)) assert np.array_equal(recent_values(d_stream_array), recent_values(dd_stream_array)) c_stream_array.extend(np.arange(5.0)) scheduler.step() assert np.array_equal(d_stream_array.recent[:d_stream_array.stop], np.cumsum(np.arange(5.0))) assert np.array_equal(recent_values(d_stream_array), recent_values(dd_stream_array)) c_stream_array.extend(np.arange(5.0, 10.0, 1.0)) scheduler.step() assert np.array_equal(d_stream_array.recent[:d_stream_array.stop], np.cumsum(np.arange(10.0))) assert np.array_equal(recent_values(d_stream_array), recent_values(dd_stream_array)) # Test list map with positive integer dimension on StreamArray e_stream_array = StreamArray(name='e_stream_array', dimension=3) f_stream_array = StreamArray(name='f_stream_array', dimension=2) def f_np_dimension(input_array): output_array = np.zeros([len(input_array), 2]) output_array[:, 0] = input_array[:, 0] + input_array[:, 1] output_array[:, 1] = input_array[:, 2] return output_array c_np_agent = map_list(func=f_np_dimension, in_stream=e_stream_array, out_stream=f_stream_array, name='c_np_agent') e_stream_array.extend(np.array([[1.0, 2.0, 3.0]])) scheduler.step() assert np.array_equal(f_stream_array.recent[:f_stream_array.stop], np.array([[3.0, 3.0]])) e_stream_array.extend(np.array([[4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])) scheduler.step() assert np.array_equal(f_stream_array.recent[:f_stream_array.stop], np.array([[3.0, 3.0], [9.0, 6.0], [15.0, 9.0]])) # Test list map with a dimension which is a tuple of integers. g_stream_array = StreamArray(name='g_stream_array', dimension=(2, 2)) h_stream_array = StreamArray(name='h_stream_array', dimension=(2, 2)) def f_np_tuple_dimension(input_array): return input_array * 2 d_np_agent = map_list(func=f_np_tuple_dimension, in_stream=g_stream_array, out_stream=h_stream_array, name='d_np_agent') a_array = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) g_stream_array.extend(a_array) scheduler.step() assert np.array_equal(h_stream_array.recent[:h_stream_array.stop], a_array * 2) b_array = np.array([[[9.0, 10.0], [11.0, 12.0]]]) g_stream_array.extend(b_array) scheduler.step() assert np.array_equal(h_stream_array.recent[:h_stream_array.stop], np.vstack((a_array, b_array)) * 2) # Test list map with a datatype and dimension of 0. dt_0 = np.dtype([('time', int), ('value', (float, 3))]) dt_1 = np.dtype([('time', int), ('value', float)]) i_stream_array = StreamArray(name='i_stream_array', dtype=dt_0) j_stream_array = StreamArray(name='j_stream_array', dtype=dt_1) def f_datatype(input_array): output_array = np.zeros(len(input_array), dtype=dt_1) output_array['time'] = input_array['time'] output_array['value'] = np.sum(input_array['value'], axis=1) return output_array e_np_agent = map_list(func=f_datatype, in_stream=i_stream_array, out_stream=j_stream_array, name='e_np_agent') c_array = np.array([(1, [2.0, 3.0, 4.0])], dtype=dt_0) assert j_stream_array.stop == 0 i_stream_array.extend(c_array) scheduler.step() assert np.array_equal(j_stream_array.recent[:j_stream_array.stop], f_datatype(c_array)) d_array = np.array([(10, [6.0, 7.0, 8.0]), (20, [10.0, 11.0, 12.0])], dtype=dt_0) i_stream_array.extend(d_array) scheduler.step() assert np.array_equal(j_stream_array.recent[:j_stream_array.stop], f_datatype(np.hstack((c_array, d_array)))) # Test list map with a datatype and positive integer dimension. k_stream_array = StreamArray(name='k_stream_array', dtype=dt_0, dimension=2) l_stream_array = StreamArray(name='l_stream_array', dtype=dt_1) def f_datatype_int_dimension(input_array): m = len(input_array) output_array = np.zeros(m, dtype=dt_1) for i in range(m): output_array[i]['time'] = np.max(input_array[i]['time']) output_array[i]['value'] = np.sum(input_array[i]['value']) return output_array f_np_agent = map_list(func=f_datatype_int_dimension, in_stream=k_stream_array, out_stream=l_stream_array, name='f_np_agent') e_array = np.array([[(1, [2.0, 3.0, 4.0]), (2, [5.0, 6.0, 7.0])]], dtype=dt_0) assert l_stream_array.stop == 0 k_stream_array.extend(e_array) scheduler.step() assert np.array_equal(l_stream_array.recent[:l_stream_array.stop], f_datatype_int_dimension(e_array)) f_array = np.array([[(3, [8.0, 9.0, 10.0]), (4, [11.0, 12.0, 13.0])], [(5, [-1.0, 0.0, 1.0]), (6, [-2.0, 2.0, -2.0])]], dtype=dt_0) k_stream_array.extend(f_array) scheduler.step() assert np.array_equal( l_stream_array.recent[:l_stream_array.stop], f_datatype_int_dimension(np.vstack((e_array, f_array)))) # Test list map with a datatype and a dimension which is a tuple m_stream_array = StreamArray(name='m_stream_array', dtype=dt_0, dimension=(2, 2)) n_stream_array = StreamArray(name='n_stream_array', dtype=dt_1) g_np_agent = map_list(func=f_datatype_int_dimension, in_stream=m_stream_array, out_stream=n_stream_array, name='g_np_agent') assert n_stream_array.stop == 0 g_array = np.array( [ # zeroth 2x2 array [[(1, [2.0, 3.0, 4.0]), (2, [5.0, 6.0, 7.0])], [(3, [8.0, 9.0, 10.0]), (4, [11.0, 12.0, 13.0])]], # first 2x2 array [[(5, [12.0, 13.0, 14.0]), (6, [15.0, 16.0, 17.0])], [(7, [18.0, 19.0, 20.0]), (8, [21.0, 22.0, 23.0])]] ], dtype=dt_0) m_stream_array.extend(g_array) scheduler.step() assert np.array_equal(n_stream_array.recent[:n_stream_array.stop], f_datatype_int_dimension(g_array)) h_array = np.array([[[(9, [0.0, 1.0, -1.0]), (10, [2.0, 2.0, -4.0])], [(11, [80.0, -71.0, -9.0]), (15, [0.0, 0.0, 0.0])]]], dtype=dt_0) m_stream_array.extend(h_array) scheduler.step() assert np.array_equal( n_stream_array.recent[:n_stream_array.stop], f_datatype_int_dimension(np.vstack((g_array, h_array)))) # Test list merge with StreamArray and no dimension and no data type a_in_0 = StreamArray(name='a_in_0') a_in_1 = StreamArray(name='a_in_1') a_out = StreamArray(name='a_out') def a_merge(list_of_lists): array_0, array_1 = list_of_lists return array_0 + array_1 a_s_agent = merge_list(func=a_merge, in_streams=[a_in_0, a_in_1], out_stream=a_out, name='a_s_agent') assert a_out.stop == 0 #a_in_0.extend(np.array([1.0, 2.0, 3.0])) a_in_0.extend(np.array([1.0, 2.0, 3.0])) scheduler.step() assert a_out.stop == 0 a_in_0.extend(np.array([4.0, 5.0, 6.0])) scheduler.step() assert a_out.stop == 0 a_in_1.extend(np.array([10.0, 20.0])) scheduler.step() assert np.array_equal(a_out.recent[:a_out.stop], np.array([11.0, 22.0])) a_in_1.extend(np.array([30.0, 40.0])) scheduler.step() assert np.array_equal(a_out.recent[:a_out.stop], np.array([11.0, 22.0, 33.0, 44.0])) # Test list merge with StreamArray and no dimension and data type a_in_dt_0 = StreamArray(name='a_in_dt_0', dtype=dt_0) a_in_dt_1 = StreamArray(name='a_in_dt_1', dtype=dt_0) a_out_dt = StreamArray(name='out', dtype=dt_0) def a_merge_dtype(list_of_arrays): input_array_0, input_array_1 = list_of_arrays output_array = np.zeros(len(input_array_0), dtype=dt_0) output_array['time'] = \ np.max((input_array_0['time'], input_array_1['time']), axis=0) output_array['value'] = input_array_0['value'] + input_array_1['value'] return output_array a_s_dt_agent = merge_list(func=a_merge_dtype, in_streams=[a_in_dt_0, a_in_dt_1], out_stream=a_out_dt, name='a_s_dt_agent') a_in_dt_0.extend(np.array([(1, [1.0, 2.0, 3.0])], dtype=dt_0)) scheduler.step() assert a_out_dt.stop == 0 a_in_dt_1.extend(np.array([(2, [10.0, 20.0, 30.0])], dtype=dt_0)) scheduler.step() assert np.array_equal(a_out_dt.recent[:a_out_dt.stop], np.array([(2, [11.0, 22.0, 33.0])], dtype=dt_0)) a_in_dt_0.extend( np.array([(5, [21.0, 23.0, 32.0]), (9, [27.0, 29.0, 31.0])], dtype=dt_0)) scheduler.step() assert np.array_equal(a_out_dt.recent[:a_out_dt.stop], np.array([(2, [11.0, 22.0, 33.0])], dtype=dt_0)) a_in_dt_1.extend( np.array([(6, [19.0, 17.0, 8.0]), (8, [13.0, 11.0, 9.0]), (10, [3.0, 1.0, 5.0])], dtype=dt_0)) scheduler.step() assert np.array_equal( a_out_dt.recent[:a_out_dt.stop], np.array([(2, [11.0, 22.0, 33.0]), (6, [40.0, 40.0, 40.0]), (9, [40.0, 40.0, 40.0])], dtype=dt_0)) # Test list split with StreamArray and positive integer dimension and no data type dim = 2 b_in = StreamArray(name='b_in', dimension=dim) b_out_0 = StreamArray(name='b_out_0', dimension=dim) b_out_1 = StreamArray(name='b_out_1') def b_split(array_of_arrays): length = len(array_of_arrays) output_array_0 = np.zeros(( length, dim, )) output_array_1 = np.zeros(length) for i in range(length): input_array = array_of_arrays[i] output_array_0[i] = np.array( [[np.max(input_array), np.min(input_array)]]) output_array_1[i] = np.array([np.sum(input_array)]) return output_array_0, output_array_1 b_split_agent = split_list(func=b_split, in_stream=b_in, out_streams=[b_out_0, b_out_1], name='b_split_agent') b_array_0 = np.array([[1.0, 9.0]]) b_in.extend(b_array_0) scheduler.step() assert np.array_equal(b_out_0.recent[:b_out_0.stop], np.array([[9.0, 1.0]])) assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0])) b_array_1 = np.array([[98.0, 2.0]]) b_in.extend(b_array_1) scheduler.step() assert np.array_equal(b_out_0.recent[:b_out_0.stop], np.array([[9.0, 1.0], [98.0, 2.0]])) assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0, 100.0])) b_array_3 = np.array([[10.0, 20.0], [3.0, 37.0], [55.0, 5.0]]) b_in.extend(b_array_3) scheduler.step() assert np.array_equal( b_out_0.recent[:b_out_0.stop], np.array([[9.0, 1.0], [98.0, 2.0], [20.0, 10.0], [37.0, 3.0], [55.0, 5.0]])) assert np.array_equal(b_out_1.recent[:b_out_1.stop], np.array([10.0, 100.0, 30.0, 40.0, 60.0])) # Test list many with StreamArray and no dimension and no data type c_in_0 = StreamArray(name='c_in_0') c_in_1 = StreamArray(name='c_in_1') c_out_0 = StreamArray(name='c_out_0') c_out_1 = StreamArray(name='c_out_1') def c_many(list_of_arrays): length = len(list_of_arrays) input_array_0, input_array_1 = list_of_arrays output_array_0 = np.zeros(length) output_array_1 = np.zeros(length) output_array_0 = input_array_0 + input_array_1 output_array_1 = input_array_0 - input_array_1 return [output_array_0, output_array_1] c_multi_agent = multi_list(func=c_many, in_streams=[c_in_0, c_in_1], out_streams=[c_out_0, c_out_1], name='c_multi_agent') c_array_0_0 = np.arange(3.0) * 3 c_array_1_0 = np.arange(3.0) c_in_0.extend(c_array_0_0) scheduler.step() c_in_1.extend(c_array_1_0) scheduler.step() assert np.array_equal(c_out_0.recent[:c_out_0.stop], np.array([0.0, 4.0, 8.0])) assert np.array_equal(c_out_1.recent[:c_out_1.stop], np.array([0.0, 2.0, 4.0])) c_array_0_1 = np.array([100.0]) c_array_1_1 = np.array([4.0, 5.0, 6.0]) c_in_0.extend(c_array_0_1) c_in_1.extend(c_array_1_1) scheduler.step() assert np.array_equal(c_out_0.recent[:c_out_0.stop], np.array([0.0, 4.0, 8.0, 104.0])) assert np.array_equal(c_out_1.recent[:c_out_1.stop], np.array([0.0, 2.0, 4.0, 96.0])) ## # Test list many with StreamArray and no dimension and no data type ## z_in_0 = StreamArray(name='z_in_0') ## z_in_1 = StreamArray(name='z_in_1') ## z_out_0 = StreamArray(name='z_out_0') ## z_out_1 = StreamArray(name='z_out_1') ## def execute_list_of_np_func(v, list_of_np_func): ## length = len(list_of_arrays) ## input_array_0, input_array_1 = list_of_arrays ## output_array_0 = np.zeros(length) ## output_array_1 = np.zeros(length) ## output_array_0 = input_array_0 + input_array_1 ## output_array_1 = input_array_0 - input_array_1 ## return [output_array_0, output_array_1] # Test list many with StreamArray and positive integer dimension and no data type dim = 2 d_in_0 = StreamArray(name='d_in_0', dimension=dim) d_in_1 = StreamArray(name='d_in_1', dimension=dim) d_out_0 = StreamArray(name='d_out_0', dimension=dim) d_out_1 = StreamArray(name='d_out_1') def d_many(list_of_arrays): length = len(list_of_arrays) input_array_0, input_array_1 = list_of_arrays output_array_0 = input_array_0 + input_array_1 output_array_1 = np.array([np.sum(input_array_0 + input_array_1)]) return output_array_0, output_array_1 d_multi_agent = multi_list(func=d_many, in_streams=[d_in_0, d_in_1], out_streams=[d_out_0, d_out_1], name='d_multi_agent') d_array_0_0 = np.array([[1.0, 2.0]]) d_array_1_0 = np.array([[0.0, 10.0]]) d_in_0.extend(d_array_0_0) scheduler.step() d_in_1.extend(d_array_1_0) scheduler.step() assert np.array_equal(d_out_0.recent[:d_out_0.stop], np.array([[1.0, 12.0]])) assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0])) d_array_0_1 = np.array([[4.0, 8.0]]) d_array_1_1 = np.array([[2.0, 4.0]]) d_in_0.extend(d_array_0_1) d_in_1.extend(d_array_1_1) scheduler.step() assert np.array_equal(d_out_0.recent[:d_out_0.stop], np.array([[1.0, 12.0], [6.0, 12.0]])) assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0, 18.0])) d_array_0_2 = np.array([[20.0, 30.0], [40.0, 50.0]]) d_array_1_2 = np.array([[-10.0, -20.0]]) d_in_0.extend(d_array_0_2) d_in_1.extend(d_array_1_2) scheduler.step() assert np.array_equal(d_out_0.recent[:d_out_0.stop], np.array([[1.0, 12.0], [6.0, 12.0], [10.0, 10.0]])) assert np.array_equal(d_out_1.recent[:d_out_1.stop], np.array([13.0, 18.0, 20.0])) # Test list many with StreamArray and tuple dimension and no data type dim = (2, 2) e_in_0 = StreamArray(name='e_in_0', dimension=dim) e_in_1 = StreamArray(name='e_in_1', dimension=dim) e_out_0 = StreamArray(name='e_out_0', dimension=dim) e_out_1 = StreamArray(name='e_out_1') def e_many(list_of_arrays): input_array_0, input_array_1 = list_of_arrays output_array_0 = input_array_0 + input_array_1 output_array_1 = \ np.array([np.sum(input_array_0[i]+ input_array_1[i]) for i in range(len(input_array_0))]) return output_array_0, output_array_1 e_multi_agent = multi_list(func=e_many, in_streams=[e_in_0, e_in_1], out_streams=[e_out_0, e_out_1], name='e_multi_agent') e_array_0_0 = np.array([[[10.0, 20.0], [30.0, 40.0]]]) e_in_0.extend(e_array_0_0) e_array_1_0 = np.array([[[1.0, 2.0], [3.0, 4.0]]]) e_in_1.extend(e_array_1_0) scheduler.step() assert np.array_equal(e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0])) e_array_0_1 = np.array([[[11.0, 13.0], [17.0, 19.0]], [[2.0, 4.0], [6.0, 8.0]]]) e_in_0.extend(e_array_0_1) scheduler.step() assert np.array_equal(e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0])) e_array_1_1 = np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) e_in_1.extend(e_array_1_1) scheduler.step() assert np.array_equal( e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]], [[12.0, 15.0], [20.0, 23.0]], [[7.0, 10.0], [13.0, 16.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0, 70.0, 46.0])) e_array_1_2 = np.array([[[11.0, 12.0], [13.0, 14.0]], [[15.0, 16.0], [17.0, 18.0]]]) e_in_1.extend(e_array_1_2) scheduler.step() e_array_0_2 = np.array([[[-10.0, -11.0], [12.0, 16.0]], [[-14.0, -15.0], [-16.0, -17.0]]]) e_in_0.extend(e_array_0_2) scheduler.step() assert np.array_equal( e_out_0.recent[:e_out_0.stop], np.array([[[11.0, 22.0], [33.0, 44.0]], [[12.0, 15.0], [20.0, 23.0]], [[7.0, 10.0], [13.0, 16.0]], [[1.0, 1.0], [25.0, 30.0]], [[1.0, 1.0], [1.0, 1.0]]])) assert np.array_equal(e_out_1.recent[:e_out_1.stop], np.array([110.0, 70.0, 46.0, 57.0, 4.0])) #------------------------------------------------------------------ #------------------------------------------------------------------ # Test args and kwargs #------------------------------------------------------------------ #------------------------------------------------------------------ # Test map def map_args(lst, multiplicand): return [multiplicand * element for element in lst] in_stream_map_args_stream = Stream('in_stream_map_args_stream') out_stream_map_args_stream = Stream('out_stream_map_args_stream') out_stream_map_kwargs_stream = Stream('out_stream_map_kwargs_stream') map_args_agent = map_list(map_args, in_stream_map_args_stream, out_stream_map_args_stream, None, None, 'map_args_agent', 2) map_kwargs_agent = map_list(func=map_args, in_stream=in_stream_map_args_stream, out_stream=out_stream_map_kwargs_stream, name='map_args_agent', multiplicand=2) scheduler.step() assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \ [] assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \ [] in_stream_map_args_stream.extend(range(5)) scheduler.step() assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \ [0, 2, 4, 6, 8] assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \ [0, 2, 4, 6, 8] in_stream_map_args_stream.append(5) scheduler.step() assert out_stream_map_args_stream.recent[:out_stream_map_args_stream.stop] == \ [0, 2, 4, 6, 8, 10] assert out_stream_map_kwargs_stream.recent[:out_stream_map_kwargs_stream.stop] == \ [0, 2, 4, 6, 8, 10] # Test list map on StreamArray (dimension is 0). a_stream_array_args = StreamArray(name='a_stream_array_args') b_stream_array_args = StreamArray(name='b_stream_array_args') c_stream_array_args_kwargs = StreamArray(name='c_stream_array_args_kwargs') def f_np_args(input_array_args, addend): return input_array_args + addend def f_np_args_kwargs(input_array_args_kwargs, multiplicand, addend): return input_array_args_kwargs * multiplicand + addend a_np_agent_args = map_list(f_np_args, a_stream_array_args, b_stream_array_args, None, None, 'a_np_agent_args', 1) a_np_agent_args_kwargs = map_list(f_np_args_kwargs, a_stream_array_args, c_stream_array_args_kwargs, None, None, 'a_np_agent_args_kwargs', 2, addend=10) scheduler.step() assert np.array_equal( b_stream_array_args.recent[:b_stream_array_args.stop], np.array([])) assert np.array_equal( c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.stop], np.array([])) a_stream_array_args.extend(np.arange(5.0)) scheduler.step() assert np.array_equal( b_stream_array_args.recent[:b_stream_array_args.stop], np.arange(5.0) + 1) assert np.array_equal( c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.stop], np.arange(5.0) * 2 + 10) a_stream_array_args.extend(np.arange(5.0, 10.0, 1.0)) scheduler.step() assert np.array_equal( b_stream_array_args.recent[:b_stream_array_args.stop], np.arange(10.0) + 1) assert np.array_equal( c_stream_array_args_kwargs.recent[:c_stream_array_args_kwargs.stop], np.arange(10.0) * 2 + 10) print 'TEST OF OP (LISTS) IS SUCCESSFUL'
def test2(): # SET PARAMETERS # fs: sample rate fs = 50 # ma: maximum amplitude ma = 1 # ps: phase shift ps = 0.0 # td: time duration td = 10.0 # or: order order = 2 lowcut = 1 highcut = 5 # GENERATE WAVES # Generate streams of waves with different frequencies, # amplitudes and phase shifts. Each wave is a pure # frequency. wave_data_low_frequency = generate_sine_wave(frequency=0.25, max_amplitude=ma, phase_shift=ps, sample_rate=fs, time_duration=td) wave_data_medium_frequency = generate_sine_wave(frequency=2.5, max_amplitude=ma, phase_shift=ps, sample_rate=fs, time_duration=td) wave_data_high_frequency = generate_sine_wave(frequency=15.0, max_amplitude=ma, phase_shift=ps, sample_rate=fs, time_duration=td) # Generate a wave that is the sum of pure-frequency # waves. wave_data_combined_frequencies = (wave_data_low_frequency + wave_data_medium_frequency + wave_data_high_frequency) # ----------------------------------------------------------- # TEST BANDPASS FIR FILTER # ----------------------------------------------------------- x = StreamArray('x') y = StreamArray('y') ## # Create a bandpass filter that operates on an input ## # stream x to produce the output stream y. This filter ## # uses firwin() from scipy.signal ## b = fir_bandpass(lowcut, highcut, fs) ## BP_FIR(b).filter_stream(in_stream=x, out_stream=y) # Create a bandpass filter that operates on an input # stream x to produce the output stream y. bandpass_filter_stream(x, y, lowcut, highcut, fs) # Feed the input to the filter with combined frequencies. x.extend(wave_data_combined_frequencies) # Run a step and plot output. Stream.scheduler.step() y.extend(wave_data_medium_frequency) before_filtering_data = recent_values(x) after_filtering_data = recent_values(y) # Plot data print 'PLOTTING FIR FILTER' before_filtering_data = recent_values(x) after_filtering_data = recent_values(y) plt.figure(1) plt.subplot(211) plt.plot(before_filtering_data) plt.subplot(212) plt.plot(after_filtering_data) plt.show()