Esempio n. 1
0
    def _print_MatMul(self, expr):
        a = list(expr.args)
        for i in xrange(0, len(a)):
            if a[i].is_Add and len(a) > 1:
                a[i] = prettyForm(*self._print(a[i]).parens())
            else:
                a[i] = self._print(a[i])

        return prettyForm.__mul__(*a)
Esempio n. 2
0
    def _print_MatMul(self, expr):
        a = list(expr.args)
        for i in xrange(0, len(a)):
            if a[i].is_Add and len(a) > 1:
                a[i] = prettyForm(*self._print(a[i]).parens())
            else:
                a[i] = self._print(a[i])

        return prettyForm.__mul__(*a)
Esempio n. 3
0
    def _print_Mul(self, product):
        a = [] # items in the numerator
        b = [] # items that are in the denominator (if any)

        if self.order != 'old':
            args = product.as_ordered_factors()
        else:
            args = product.args

        # Gather terms for numerator/denominator
        for item in args:
            if item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
                b.append(C.Pow(item.base, -item.exp))
            elif item.is_Rational and item is not S.Infinity:
                if item.p != 1:
                    a.append( C.Rational(item.p) )
                if item.q != 1:
                    b.append( C.Rational(item.q) )
            else:
                a.append(item)

        # Convert to pretty forms. Add parens to Add instances if there
        # is more than one term in the numer/denom
        for i in xrange(0, len(a)):
            if a[i].is_Add and len(a) > 1:
                a[i] = prettyForm(*self._print(a[i]).parens())
            else:
                a[i] = self._print(a[i])

        for i in xrange(0, len(b)):
            if b[i].is_Add and len(b) > 1:
                b[i] = prettyForm(*self._print(b[i]).parens())
            else:
                b[i] = self._print(b[i])

        # Construct a pretty form
        if len(b) == 0:
            return prettyForm.__mul__(*a)
        else:
            if len(a) == 0:
                a.append( self._print(S.One) )
            return prettyForm.__mul__(*a) / prettyForm.__mul__(*b)
Esempio n. 4
0
    def _print_Mul(self, product):
        a = []  # items in the numerator
        b = []  # items that are in the denominator (if any)

        if self.order not in ('old', 'none'):
            args = product.as_ordered_factors()
        else:
            args = product.args

        # Gather terms for numerator/denominator
        for item in args:
            if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
                b.append(C.Pow(item.base, -item.exp))
            elif item.is_Rational and item is not S.Infinity:
                if item.p != 1:
                    a.append(C.Rational(item.p))
                if item.q != 1:
                    b.append(C.Rational(item.q))
            else:
                a.append(item)

        # Convert to pretty forms. Add parens to Add instances if there
        # is more than one term in the numer/denom
        for i in xrange(0, len(a)):
            if a[i].is_Add and len(a) > 1:
                a[i] = prettyForm(*self._print(a[i]).parens())
            else:
                a[i] = self._print(a[i])

        for i in xrange(0, len(b)):
            if b[i].is_Add and len(b) > 1:
                b[i] = prettyForm(*self._print(b[i]).parens())
            else:
                b[i] = self._print(b[i])

        # Construct a pretty form
        if len(b) == 0:
            return prettyForm.__mul__(*a)
        else:
            if len(a) == 0:
                a.append(self._print(S.One))
            return prettyForm.__mul__(*a) / prettyForm.__mul__(*b)