def buildSugar(self, baseAtoms, pucker): """Build a sugar of the specified pucker onto a base ARGUMENTS: baseAtoms - a dictionary of base atoms in the form atomName:[x, y, z] Note that this dictionary MUST contain the C1' atom pucker - the pucker of the sugar to be built (passed as an integer, either 2 or 3) RETURNS: coordinates for a sugar of the specified pucker in anti configuration with the base """ #fetch the appropriate sugar structure if pucker == 3: sugarAtoms = self.__c3pAtoms elif pucker == 2: sugarAtoms = self.__c2pAtoms else: raise "BuildInitSugar called with unrecognized pucker: " + str(pucker) #I don't have to worry about accidentally modifying the original atom dictionaries, since #rotateAtoms effectively makes a deep copy #figure out which base atoms to use for alignment if baseAtoms.has_key("N9"): Natom = "N9" Catom = "C4" else: Natom = "N1" Catom = "C2" #rotate the sugar so the glycosidic bond is at the appropriate angle #first, calculate an axis for this rotation translatedBaseN = minus(baseAtoms[Natom], baseAtoms["C1'"]) sugarN = sugarAtoms[Natom] axis = crossProd(sugarN, translatedBaseN) angle = torsion(translatedBaseN, axis, (0,0,0), sugarN) #if either angle or magnitude(axis) is 0, then the glycosidic bond is already oriented appropriately if not(angle == 0 or magnitude(axis) == 0): sugarAtoms = rotateAtoms(sugarAtoms, axis, angle) #next, rotate the sugar so that chi is appropriate translatedBaseC = minus(baseAtoms[Catom], baseAtoms["C1'"]) curChi = torsion(translatedBaseC, translatedBaseN, [0,0,0], sugarAtoms["O4'"]) sugarAtoms = rotateAtoms(sugarAtoms, translatedBaseN, curChi - STARTING_CHI) #remove the unnecessary atoms from the sugarAtoms dict del sugarAtoms["N1"] del sugarAtoms["N9"] #translate the sugar to the C1' atom of the base sugarAtoms = dict([(atom, plus(coords, baseAtoms["C1'"])) for (atom, coords) in sugarAtoms.iteritems()]) return sugarAtoms
def flipBase(self, curBase): """Flip the base anti/syn ARGUMENTS: curBase - the current base object in the form [baseType, baseCoordinates] RETURNS: the base object with rotated coordinates NOTE: This function does not necessarily simply rotate about chi. When flipping a purine, it also adjusts the glycosidic bond position so that it the base a chance of staying in the density """ (baseType, curBaseCoords) = curBase curC1coords = curBaseCoords["C1'"] newBaseCoords = {} #translate the base to the origin for atomName, curAtomCoords in curBaseCoords.items(): newBaseCoords[atomName] = minus(curBaseCoords[atomName], curC1coords) #the rotation axis is the same as the alignment vector for mutating the base #for pyrimidines, the axis is C1'-C4 #for purines, the axis is from C1' to the center of the C4-C5 bond axis = None if baseType == "C" or baseType == "U": axis = newBaseCoords["C4"] else: axis = plus(newBaseCoords["C4"], newBaseCoords["C5"]) axis = scalarProd(1.0/2.0, axis) #rotate the base 180 degrees about the axis newBaseCoords = rotateAtoms(newBaseCoords, axis, 180, curC1coords) return [baseType, newBaseCoords]
def rotateSugar(antiSugarCoords, atoms, newChi = "syn"): """Given a sugar in anti configuration, rotate it to a new configuration (such as syn or high-anti). ARGUMENTS: antiSugarCoords - a dictionary containing a sugar in anti configuration in the format atomName: [x, y, z] typically, this dictionary is generated by a BuildInitSugar object atoms - a dictionary containing base coordinates in the format atomName: [x, y, z] OPTIONAL ARGUMENTS: newChi - the chi value to rotate the sugar to may be "syn", "high-anti", or a number (in degrees) defaults to "syn" RETURNS: synSugarCoords - a dictionary containing a sugar in syn configuration in the format atomName: [x, y, z] """ if newChi == "syn": newChi = SYN_CHI elif newChi == "high-anti": newChi = HIGH_ANTI_CHI #translate the sugar coordinates to the origin synSugarCoords = dict([(atom, minus(coords, atoms["C1'"])) for (atom, coords) in antiSugarCoords.iteritems()]) #rotate the sugar if atoms.has_key("N9"): baseN = "N9" else: baseN = "N1" axis = minus(atoms[baseN], atoms["C1'"]) synSugarCoords = rotateAtoms(synSugarCoords, axis, newChi - STARTING_CHI, atoms["C1'"]) return synSugarCoords
def mutateBase(self, curBase, newBaseType): """Change the base type. ARGUMENTS: curBase - the current base object in the form [baseType, baseCoordinates] newBaseType - the base type to mutate to RETURNS: baseObj - a list of [baseType, baseCoordinates] """ (curBaseType, curBaseCoords) = curBase #calculate the vectors used to align the old and new bases #for pyrimidines, the vector is C1'-C4 #for purines, the vector is from C1' to the center of the C4-C5 bond curAlignmentVector = None if curBaseType == "C" or curBaseType == "U": curAlignmentVector = minus(curBaseCoords["C4"], curBaseCoords["C1'"]) else: curBaseCenter = plus(curBaseCoords["C4"], curBaseCoords["C5"]) curBaseCenter = scalarProd(1.0/2.0, curBaseCenter) curAlignmentVector = minus(curBaseCenter, curBaseCoords["C1'"]) #calculate the alignment vector for the new base newBaseCoords = self.__baseStrucs[newBaseType] newAlignmentVector = None if newBaseType == "C" or newBaseType == "U": newAlignmentVector = newBaseCoords["C4"] else: newAlignmentVector = plus(newBaseCoords["C4"], newBaseCoords["C5"]) newAlignmentVector = scalarProd(1.0/2.0, newAlignmentVector) #calculate the angle between the alignment vectors rotationAngle = -angle(curAlignmentVector, [0,0,0], newAlignmentVector) axis = crossProd(curAlignmentVector, newAlignmentVector) #rotate the new base coordinates newBaseCoords = rotateAtoms(newBaseCoords, axis, rotationAngle) #calculate the normals of the base planes curNormal = None if curBaseType == "C" or curBaseType == "U": curNormal = crossProd(minus(curBaseCoords["N3"], curBaseCoords["N1"]), minus(curBaseCoords["C6"], curBaseCoords["N1"])) else: curNormal = crossProd(minus(curBaseCoords["N3"], curBaseCoords["N9"]), minus(curBaseCoords["N7"], curBaseCoords["N9"])) newNormal = None if newBaseType == "C" or newBaseType == "U": newNormal = crossProd(minus(newBaseCoords["N3"], newBaseCoords["N1"]), minus(newBaseCoords["C6"], newBaseCoords["N1"])) else: newNormal = crossProd(minus(newBaseCoords["N3"], newBaseCoords["N9"]), minus(newBaseCoords["N7"], newBaseCoords["N9"])) #calculate the angle between the normals normalAngle = -angle(curNormal, [0,0,0], newNormal); normalAxis = crossProd(curNormal, newNormal) #rotate the new base coordinates so that it falls in the same plane as the current base #and translate the base to the appropriate location newBaseCoords = rotateAtoms(newBaseCoords, normalAxis, normalAngle, curBaseCoords["C1'"]) return [newBaseType, newBaseCoords]
def findBase(self, mapNum, sugar, phos5, phos3, baseType, direction = 3): """Rotate the sugar center by 360 degrees in ROTATE_SUGAR_INTERVAL increments ARGUMENTS: mapNum - the molecule number of the Coot map to use sugar - the coordinates of the C1' atom phos5 - the coordinates of the 5' phosphate phos3 - the coordinates of the 3' phosphate baseType - the base type (A, C, G, or U) OPTIONAL ARGUMENTS: direction - which direction are we tracing the chain if it is 5 (i.e. 3'->5'), then phos5 and phos3 will be flipped all other values will be ignored defaults to 3 (i.e. 5'->3') RETURNS: baseObj - a list of [baseType, baseCoordinates] """ if direction == 5: (phos5, phos3) = (phos3, phos5) #calculate the bisector of the phos-sugar-phos angle #first, calculate a normal to the phos-sugar-phos plane sugarPhos5Vec = minus(phos5, sugar) sugarPhos3Vec = minus(phos3, sugar) normal = crossProd(sugarPhos5Vec, sugarPhos3Vec) normal = scalarProd(normal, 1.0/magnitude(normal)) phosSugarPhosAngle = angle(phos5, sugar, phos3) bisector = rotate(sugarPhos5Vec, normal, phosSugarPhosAngle/2.0) #flip the bisector around (so it points away from the phosphates) and scale its length to 5 A startingBasePos = scalarProd(bisector, -1/magnitude(bisector)) #rotate the base baton by 10 degree increments about half of a sphere rotations = [startingBasePos] #a list of coordinates for all of the rotations for curTheta in range(-90, -1, 10) + range(10, 91, 10): curRotation = rotate(startingBasePos, normal, curTheta) rotations.append(curRotation) #here's where the phi=0 rotation is accounted for for curPhi in range(-90, -1, 10) + range(10, 91, 10): rotations.append(rotate(curRotation, startingBasePos, curPhi)) #test electron density along all base batons for curBaton in rotations: curDensityTotal = 0 densityList = [] for i in range(1, 9): (x, y, z) = plus(sugar, scalarProd(i/2.0, curBaton)) curPointDensity = density_at_point(mapNum, x, y, z) curDensityTotal += curPointDensity densityList.append(curPointDensity) curBaton.append(curDensityTotal) #the sum of the density (equivalent to the mean for ordering purposes) curBaton.append(median(densityList)) #the median of the density curBaton.append(min(densityList)) #the minimum of the density #find the baton with the max density (as measured using the median) #Note that we ignore the sum and minimum of the density. Those calculations could be commented out, # but they may be useful at some point in the future. When we look at higher resolutions maybe? # Besides, they're fast calculations.) baseDir = max(rotations, key = lambda x: x[4]) #rotate the stock base+sugar structure to align with the base baton rotationAngle = angle(self.__baseStrucs["C"]["C4"], [0,0,0], baseDir) axis = crossProd(self.__baseStrucs["C"]["C4"], baseDir[0:3]) orientedBase = rotateAtoms(self.__baseStrucs["C"], axis, rotationAngle) #rotate the base about chi to find the best fit to density bestFitBase = None maxDensity = -999999 for curAngle in range(0,360,5): rotatedBase = rotateAtoms(orientedBase, orientedBase["C4"], curAngle, sugar) curDensity = 0 for curAtom in ["N1", "C2", "N3", "C4", "C5", "C6"]: curDensity += density_at_point(mapNum, rotatedBase[curAtom][0], rotatedBase[curAtom][1], rotatedBase[curAtom][2]) #this is "pseudoChi" because it uses the 5' phosphate in place of the O4' atom pseudoChi = torsion(phos5, sugar, rotatedBase["N1"], rotatedBase["N3"]) curDensity *= self.__pseudoChiInterp.interp(pseudoChi) if curDensity > maxDensity: maxDensity = curDensity bestFitBase = rotatedBase baseObj = ["C", bestFitBase] #mutate the base to the appropriate type if baseType != "C": baseObj = self.mutateBase(baseObj, baseType) return baseObj