def parse(self, para: Paragraph) -> Paragraph:
        edus = []
        for edu in para.edus():
            edu_copy = EDU([TEXT(edu.text)])
            setattr(edu_copy, "words", edu.words)
            setattr(edu_copy, "tags", edu.tags)
            edus.append(edu_copy)
        if len(edus) < 2:
            return para

        trans_probs = []
        state = self.init_state(edus)
        while not self.terminate(state):
            logits = self.model(state)
            valid = self.valid_trans(state)
            for i, (trans, _, _) in enumerate(self.model.trans_label.id2label):
                if trans not in valid:
                    logits[i] = -INF
            probs = logits.softmax(dim=0)
            trans_probs.append(probs)
            next_trans, _, _ = self.model.trans_label.id2label[probs.argmax(
                dim=0)]
            if next_trans == SHIFT:
                state = self.model.shift(state)
            elif next_trans == REDUCE:
                state = self.model.reduce(state)
            else:
                raise ValueError("unexpected transition occured")
        parsed = self.build_tree(edus, trans_probs)
        return parsed
Esempio n. 2
0
 def build_tree(self, edus, trans_probs):
     buffer = deque(edus)
     stack = []
     for prob in trans_probs:
         trans, nuclear, ftype = self.model.trans_label.id2label[prob.argmax()]
         ctype = rev_relationmap[ftype] if ftype is not None else None
         if trans == SHIFT:
             stack.append(buffer.popleft())
         elif trans == REDUCE:
             right = stack.pop()
             left = stack.pop()
             comp = Relation([left, right], nuclear=nuclear, ftype=ftype, ctype=ctype)
             stack.append(comp)
     assert len(stack) == 1
     return Paragraph([stack[0]])
Esempio n. 3
0
def parse_and_eval(dataset, model):
    parser = ShiftReduceParser(model)
    golds = list(filter(lambda d: d.root_relation(), chain(*dataset)))
    num_instances = len(golds)
    strips = []
    for paragraph in golds:
        edus = []
        for edu in paragraph.edus():
            edu_copy = EDU([TEXT(edu.text)])
            setattr(edu_copy, "words", edu.words)
            setattr(edu_copy, "tags", edu.tags)
            edus.append(edu_copy)
        strips.append(Paragraph(edus))

    parses = []
    for strip in strips:
        parses.append(parser.parse(strip))
    return num_instances, parse_eval(parses, golds)
def evaluate(args):
    pipeline = build_pipeline(schema=args.schema,
                              segmenter_name=args.segmenter_name,
                              use_gpu=args.use_gpu)
    cdtb = CDTB(args.data,
                "TRAIN",
                "VALIDATE",
                "TEST",
                ctb_dir=args.ctb_dir,
                preprocess=True,
                cache_dir=args.cache_dir)
    golds = list(filter(lambda d: d.root_relation(), chain(*cdtb.test)))
    parses = []

    if args.use_gold_edu:
        logger.info("evaluation with gold edu segmentation")
    else:
        logger.info("evaluation with auto edu segmentation")

    for para in tqdm(golds, desc="parsing", unit=" para"):
        if args.use_gold_edu:
            edus = []
            for edu in para.edus():
                edu_copy = EDU([TEXT(edu.text)])
                setattr(edu_copy, "words", edu.words)
                setattr(edu_copy, "tags", edu.tags)
                edus.append(edu_copy)
        else:
            sentences = []
            for sentence in para.sentences():
                if list(sentence.iterfind(node_type_filter(EDU))):
                    copy_sentence = Sentence([TEXT([sentence.text])])
                    if hasattr(sentence, "words"):
                        setattr(copy_sentence, "words", sentence.words)
                    if hasattr(sentence, "tags"):
                        setattr(copy_sentence, "tags", sentence.tags)
                    setattr(copy_sentence, "parse", cdtb.ctb[sentence.sid])
                    sentences.append(copy_sentence)
            para = pipeline.cut_edu(Paragraph(sentences))
            edus = []
            for edu in para.edus():
                edu_copy = EDU([TEXT(edu.text)])
                setattr(edu_copy, "words", edu.words)
                setattr(edu_copy, "tags", edu.tags)
                edus.append(edu_copy)
        parse = pipeline.parse(Paragraph(edus))
        parses.append(parse)

    # edu score
    scores = edu_eval(golds, parses)
    logger.info("EDU segmentation scores:")
    logger.info(gen_edu_report(scores))

    # parser score
    cdtb_macro_scores = eval.parse_eval(parses, golds, average="macro")
    logger.info("CDTB macro (strict) scores:")
    logger.info(eval.gen_parse_report(*cdtb_macro_scores))

    # nuclear scores
    nuclear_scores = eval.nuclear_eval(parses, golds)
    logger.info("nuclear scores:")
    logger.info(eval.gen_category_report(nuclear_scores))

    # relation scores
    ctype_scores, ftype_scores = eval.relation_eval(parses, golds)
    logger.info("coarse relation scores:")
    logger.info(eval.gen_category_report(ctype_scores))
    logger.info("fine relation scores:")
    logger.info(eval.gen_category_report(ftype_scores))

    # height eval
    height_scores = eval.height_eval(parses, golds)
    logger.info("structure precision by node height:")
    logger.info(eval.gen_height_report(height_scores))
Esempio n. 5
0
logger = logging.getLogger("test rnn segmenter")

if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)
    with open("data/models/segmenter.rnn.model", "rb") as model_fd:
        model = torch.load(model_fd, map_location='cpu')
        model.use_gpu = False
        model.eval()
    segmenter = RNNSegmenter(model)
    cdtb = CDTB("data/CDTB",
                "TRAIN",
                "VALIDATE",
                "TEST",
                ctb_dir="data/CTB",
                preprocess=True,
                cache_dir="data/cache")

    golds = []
    segs = []
    for paragraph in tqdm.tqdm(chain(*cdtb.test), desc="segmenting"):
        seged_sents = []
        for sentence in paragraph.sentences():
            # make sure sentence has edus
            if list(sentence.iterfind(node_type_filter(EDU))):
                seged_sents.append(Sentence(segmenter.cut_edu(sentence)))
        if seged_sents:
            segs.append(Paragraph(seged_sents))
            golds.append(paragraph)
    scores = edu_eval(segs, golds)
    logger.info(gen_edu_report(scores))
 def cut_edu(self, para: Paragraph) -> Paragraph:
     edus = []
     for sentence in para.sentences():
         edus.extend(self.segmenter.cut_edu(sentence))
     return Paragraph(edus)
 def cut_sent(self, text: str, sid=None):
     return Paragraph(self.segmenter.cut_sent(text, sid=sid))
Esempio n. 8
0
 def cut(self, text):
     sentences = self.cut_sent(text)
     for i, sent in enumerate(sentences):
         sentences[i] = Sentence(self.cut_edu(sent))
     return Paragraph(sentences)
Esempio n. 9
0
def evaluate(args):
    with open("pub/models/segmenter.svm.model", "rb") as segmenter_fd:
        segmenter_model = pickle.load(segmenter_fd)
    with open("pub/models/treebuilder.partptr.model", "rb") as parser_fd:
        parser_model = torch.load(parser_fd, map_location="cpu")
        parser_model.use_gpu = False
        parser_model.eval()
    segmenter = SVMSegmenter(segmenter_model)
    parser = PartPtrParser(parser_model)

    cdtb = CDTB(args.data,
                "TRAIN",
                "VALIDATE",
                "TEST",
                ctb_dir=args.ctb_dir,
                preprocess=True,
                cache_dir=args.cache_dir)
    golds = list(filter(lambda d: d.root_relation(), chain(*cdtb.test)))
    parses = []

    if args.use_gold_edu:
        logger.info("evaluation with gold edu segmentation")
    else:
        logger.info("evaluation with auto edu segmentation")

    for para in tqdm(golds, desc="parsing", unit=" para"):
        if args.use_gold_edu:
            edus = []
            for edu in para.edus():
                edu_copy = EDU([TEXT(edu.text)])
                setattr(edu_copy, "words", edu.words)
                setattr(edu_copy, "tags", edu.tags)
                edus.append(edu_copy)
            parse = parser.parse(Paragraph(edus))
            parses.append(parse)
        else:
            edus = []
            for sentence in para.sentences():
                if list(sentence.iterfind(node_type_filter(EDU))):
                    setattr(sentence, "parse", cdtb.ctb[sentence.sid])
                    edus.extend(segmenter.cut_edu(sentence))
            parse = parser.parse(Paragraph(edus))
            parses.append(parse)

    # edu score
    scores = edu_eval(golds, parses)
    logger.info("EDU segmentation scores:")
    logger.info(gen_edu_report(scores))

    # parser score
    cdtb_macro_scores = eval.parse_eval(parses, golds, average="macro")
    logger.info("CDTB macro (strict) scores:")
    logger.info(eval.gen_parse_report(*cdtb_macro_scores))

    # nuclear scores
    nuclear_scores = eval.nuclear_eval(parses, golds)
    logger.info("nuclear scores:")
    logger.info(eval.gen_category_report(nuclear_scores))

    # relation scores
    ctype_scores, ftype_scores = eval.relation_eval(parses, golds)
    logger.info("coarse relation scores:")
    logger.info(eval.gen_category_report(ctype_scores))
    logger.info("fine relation scores:")
    logger.info(eval.gen_category_report(ftype_scores))