def test_sts(model): test_file = './data/stsbenchmark/sts-test.csv' test_instances = stst.load_parse_data(test_file, nlp) model.test(test_instances, test_file) test_pearsonr = stst.eval_output_file(model.output_file) print('Test:', test_pearsonr) return test_pearsonr
def dev_sts(model): dev_file = './data/stsbenchmark/sts-dev.csv' dev_instances = stst.load_parse_data(dev_file, nlp) model.test(dev_instances, dev_file) dev_pearsonr = stst.eval_output_file(model.output_file) print('Dev:', dev_pearsonr) return dev_pearsonr
model.add(stst.NegativeFeature()) # train and test train_file = './data/stsbenchmark/sts-train.csv' dev_file = './data/stsbenchmark/sts-dev.csv' test_file = './data/stsbenchmark/sts-test.csv' # init the server and input the address nlp = stst.StanfordNLP('http://localhost:9000') # parse data train_instances = stst.load_parse_data(train_file, nlp) dev_instances = stst.load_parse_data(dev_file, nlp) # train and test model.train(train_instances, train_file) model.test(dev_instances, dev_file) # evaluation dev_pearsonr = stst.eval_output_file(model.output_file) print('Dev:', dev_pearsonr) # test on new data set test_instances = stst.load_parse_data(test_file, nlp) model.test(test_instances, test_file) test_pearsonr = stst.eval_output_file(model.output_file) print('Test:', test_pearsonr) recod_file = './data/records.csv' stst.record(recod_file, dev_pearsonr, test_pearsonr, model)