def cal_GeostrophicCurrent_from_SSH(ssh, product_n = 3):
	ns_dist = subroutine.dist_on_sphere([0.0, - 0.5], [0.0, 0.5])
	xgrid, ygrid, zgrid = D.get_grid_value('ht', product_n)
	yn = ygrid.size
	xn = xgrid.size
	Ug = np.zeros((yn, xn))
	Vg = np.zeros((yn, xn))
	xgrid_new = np.zeros(xn)
	ygrid_new = np.zeros(yn)

	for j in range(0, yn):
		if j == yn - 1:
			ygrid_new[j] = 0.5 * (ygrid[j] + ygrid[j] + 1)
			Ug[j, :] = np.nan
			Vg[j, :] = np.nan
		else:
			y0 = j
			y1 = j + 1
			ygrid_new[j] = 0.5 * (ygrid[y0] + ygrid[y1])

			if abs(ygrid_new[j]) <= 2.0: # 赤道付近においては地衡流は計算しない
				Ug[j, :] = np.nan
				Vg[j, :] = np.nan
			else:
				ew_dist = subroutine.dist_on_sphere([0.0, ygrid_new[j]], [1.0, ygrid_new[j]])
				f = subroutine.f0(ygrid_new[j])

				for i in range(0, xn):
					x0 = i
					if i == xn - 1:
						x1 = 0
						lon = 0.5 * (xgrid[i] + xgrid[i] + 1.0)
					else:
						x1 = i + 1
						lon = 0.5 * (xgrid[x0] + xgrid[x1])

					if j == 1:
						xgrid_new[i] = lon

					ssh00 = ssh[y0, x0]
					ssh01 = ssh[y1, x0]
					ssh10 = ssh[y0, x1]
					ssh11 = ssh[y1, x1]
					a = Using_jit.average_of_2data(ssh01, ssh11)
					b = Using_jit.average_of_2data(ssh00, ssh10)
					c = Using_jit.average_of_2data(ssh10, ssh11)
					d = Using_jit.average_of_2data(ssh00, ssh01)

					Ug[j, i] = -g / f * (a - b) / ns_dist
					Vg[j, i] = g / f * (c - d) / ew_dist


	return Ug, Vg, xgrid_new, ygrid_new
Esempio n. 2
0
def cal_EkmanCurrent_from_tau(taux, tauy, ygrid, nu):
	zgrid = - np.arange(N) - 0.5
	xn = taux.shape[1]
	yn = taux.shape[0]
	zn = zgrid.size
	Ue = np.zeros((yn, xn, zn))
	Ve = np.zeros((yn, xn, zn))
	Ue_new = np.zeros((yn, xn, M))
	Ve_new = np.zeros((yn, xn, M))

	for j in range(0, yn):
		if abs(ygrid[j]) <= 2.0:
			Ue[j, :, :] = np.nan
			Ve[j, :, :] = np.nan
		else:
			f = subroutine.f0(ygrid[j])
			r = np.sqrt(np.abs(f) / (2.0 * nu))

			for i in range(0, xn):
				if ygrid[j] > 0.0:
					T = ( - taux[j, i] + tauy[j, i]) / (taux[j, i] + tauy[j, i])
					Au =  (taux[j, i] + tauy[j, i]) / (np.sqrt(2.0) * r * nu * rho0)
					Av = Au
				else:
					T = ( - taux[j, i] - tauy[j, i]) / (taux[j, i] - tauy[j, i])
					Au =  (taux[j, i] - tauy[j, i]) / (np.sqrt(2.0) * r * nu * rho0)
					Av = -Au

				Ue[j, i, :] = Au * np.exp( r * zgrid[:]) * (np.cos(r * zgrid[:]) - T * np.sin(r * zgrid[:]))
				Ve[j, i, :] = Av * np.exp( r * zgrid[:]) * (np.sin(r * zgrid[:]) + T * np.cos(r * zgrid[:]))


	for m in range(0, M):
		Ue_new[:, :, m] = np.average(Ue[:, :, L*m:L*(m + 1)], axis = 2)
		Ve_new[:, :, m] = np.average(Ve[:, :, L*m:L*(m + 1)], axis = 2)

	return Ue_new, Ve_new