def test_select_zero_poppy(bb: bytes) -> None: assume(len(bb) % 8 == 0) bits = bitarray() bits.frombytes(bb) poppy = Poppy(bits) select_zero_answers: List[int] = [] for i in range(len(bits)): if not bits[i]: select_zero_answers.append(i) for i, pos in enumerate(select_zero_answers): assert poppy.select_zero(i) == pos
class Permutation: def __init__(self, values: IndexedIntSequence) -> None: runs = self._extract_runs(values) self._build_huffman_tree(values, runs) def _extract_runs(self, values: IndexedIntSequence) -> List[HuffmanTreeNode]: run_starts: List[int] = [0] for i in range(1, len(values)): if values[i] < values[i - 1]: run_starts.append(i) run_starts_bitarray = bitarray(len(values)) run_starts_bitarray.setall(False) for start in run_starts: run_starts_bitarray[start] = True self._run_starts = Poppy(run_starts_bitarray) runs: List[HuffmanTreeNode] = [] for i in range(len(run_starts)): from_index = run_starts[i] until_index = run_starts[i + 1] if i + 1 < len(run_starts) else len(values) runs.append(Run(from_=from_index, until=until_index)) return runs def _build_huffman_tree(self, values: IndexedIntSequence, tree_nodes: List[HuffmanTreeNode]) -> None: # Determine the tree topology. heapq.heapify(tree_nodes) merge_sort_bitarray = bitarray() merge_sort_offset = 0 while len(tree_nodes) > 1: x = heapq.heappop(tree_nodes) y = heapq.heappop(tree_nodes) merged = HuffmanInnerNode( size=len(x) + len(y), left_child=x, right_child=y, merge_sort_offset=merge_sort_offset ) # Populate the merge sort bitarray's values it_left = ((value, False) for value in x.iterator(values, merge_sort_bitarray)) it_right = ((value, True) for value in y.iterator(values, merge_sort_bitarray)) for _, b in heapq.merge(it_left, it_right): merge_sort_bitarray.append(b) merge_sort_offset += 1 heapq.heappush(tree_nodes, merged) # Build a LOUDS representation of the tree topology louds = LoudsBinaryTree( root=tree_nodes[0], get_left_child=lambda n: n.left_child if isinstance(n, HuffmanInnerNode) else None, get_right_child=lambda n: n.right_child if isinstance(n, HuffmanInnerNode) else None ) # The data stored at each node of the tree is: # - The offset into a bitarray (if a node is an inner node) # - The offset into the original permutation (if a node is a leaf node) node_data: List[int] = [] sizes: List[int] = [] queue = deque(tree_nodes) while queue: tree_node = queue.popleft() if isinstance(tree_node, HuffmanInnerNode): node_data.append(tree_node.merge_sort_offset) sizes.append(len(tree_node)) queue.append(tree_node.left_child) queue.append(tree_node.right_child) elif isinstance(tree_node, Run): node_data.append(tree_node.from_) sizes.append(len(tree_node)) else: raise TypeError self._louds = louds self._node_data = node_data self._merge_sort_poppy = Poppy(merge_sort_bitarray) number_of_runs = self._run_starts.rank(len(self._run_starts) - 1) self._run_rank_to_louds_id = [0] * number_of_runs for louds_id in range(len(self._node_data)): if self._louds.is_leaf(louds_id): run_offset = self._node_data[louds_id] run_rank = self._run_starts.rank(run_offset) self._run_rank_to_louds_id[run_rank - 1] = louds_id def __getitem__(self, key: int) -> int: """ Retrieve the i'th element of this permutation. """ """ Start at the leaves. Find the index of the current key `k` in the current node. Now, consider the parent node: - If the current node is the left child, get the index of the `k`'th zero in the parent node via "select_zero". - If the current node is the right child, get the index of the `k`th one in the parent node via "select". Repeat until the current node is the root, and return `k`. """ run_start = self._run_starts.rank(key) - 1 current_node = self._run_rank_to_louds_id[run_start] key = key - self._node_data[current_node] while True: parent = self._louds.get_parent(current_node) if parent is None: return key else: parent_offset = self._node_data[parent] if self._louds.get_left_child(parent) == current_node: # # get the index of the `k`'th zero in the parent node parent_rank_zero = ( 0 if parent_offset == 0 else self._merge_sort_poppy.rank_zero(parent_offset - 1) ) key = self._merge_sort_poppy.select_zero(key + parent_rank_zero) - parent_offset current_node = parent else: # get the index of the `k`th one in the parent node parent_rank = ( 0 if parent_offset == 0 else self._merge_sort_poppy.rank(parent_offset - 1) ) key = self._merge_sort_poppy.select(key + parent_rank) - parent_offset current_node = parent def index_of(self, value: int) -> int: """ Retrieve the index of the given value within this permutation. (This is the inverse of the permutation.) """ """ Start at the root. Look up the bit at position `value`. Calculate either the rank_1 or rank_0 of that position, depending on whether it's 1 or 0. Recurse to either the left or right child, depending on that value. """ current_node = self._louds.get_root() while True: if self._louds.is_leaf(current_node): return self._node_data[current_node] + value else: offset = self._node_data[current_node] bit_value = self._merge_sort_poppy[offset + value] if not bit_value: value = ( self._merge_sort_poppy.rank_zero(offset + value) - ( 0 if offset == 0 else self._merge_sort_poppy.rank_zero(offset - 1) ) ) - 1 child = self._louds.get_left_child(current_node) else: value = ( self._merge_sort_poppy.rank(offset + value) - ( 0 if offset == 0 else self._merge_sort_poppy.rank(offset - 1) ) ) - 1 child = self._louds.get_right_child(current_node) assert child is not None current_node = child