Esempio n. 1
0
def sg_argmax(tensor, opt):
    r"""Returns the indices of the maximum values along the specified dimension.
    
    See `tf.argmax()` in tensorflow.

    Args:
      tensor: A `Tensor` (automatically given by chain).
      opt:
        dim: Target dimension. Default is the last one.
        name: If provided, replace current tensor's name.

    Returns:
      A `Tensor`.
    """
    opt += tf.sg_opt(dim=tensor.get_shape().ndims - 1)
    return tf.argmax(tensor, opt.dim, opt.name)
Esempio n. 2
0
def sg_argmax(tensor, opt):
    opt += tf.sg_opt(dim=tensor.get_shape().ndims - 1)
    return tf.argmax(tensor, opt.dim, opt.name)
Esempio n. 3
0
File: nn.py Progetto: jackyzha0/vybe
W = tf.Variable(
    tf.random_normal([n_hidden_units_three, num_classes], mean=0, stddev=sd))
b = tf.Variable(tf.random_normal([num_classes], mean=0, stddev=sd))
with tf.name_scope('out'):
    y_ = tf.nn.softmax(tf.matmul(h_3, W) + b, name="out")

init = tf.global_variables_initializer()

cost_function = tf.reduce_mean(
    -tf.reduce_sum(Y * tf.log(y_), reduction_indices=[1]))
#optimizer = tf.train.RMSPropOptimizer(learning_rate,decay=0.9,momentum=0.9,centered=True).minimize(cost_function)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(
    cost_function)

correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

cost_history = np.empty(shape=[1], dtype=float)
acc_history = np.empty(shape=[1], dtype=float)
t_cost_history = np.empty(shape=[1], dtype=float)
t_acc_history = np.empty(shape=[1], dtype=float)
y_true, y_pred = None, None

with tf.Session() as session:
    session.run(init)
    saver = tf.train.Saver()
    for epoch in range(epochs):
        for batch in range(int(db_size / batchsize)):
            indices = get_indices(batchsize)
            feed = data_tools.next_minibatch(indices, db)