Esempio n. 1
0
    def train(self):  # train baseline model
        input_ph = tf.placeholder(shape=[batch_size, 28, 28, 1],
                                  dtype=tf.float32)
        label_ph = tf.placeholder(shape=[
            batch_size,
        ], dtype=tf.int32)

        predict = self.forward(input_ph)

        loss_tensor = tf.reduce_mean(predict.sg_ce(target=label_ph))

        # use to update network parameters
        optim = tf.sg_optim(loss_tensor, optim='Adam', lr=1e-3)

        # use saver to save a new model
        saver = tf.train.Saver()

        sess = tf.Session()
        with tf.sg_queue_context(sess):
            # inital
            tf.sg_init(sess)

        # validation
        acc = (predict.sg_reuse(
            input=Mnist.valid.image).sg_softmax().sg_accuracy(
                target=Mnist.valid.label, name='validation'))

        tf.sg_train(loss=loss,
                    eval_metric=[acc],
                    max_ep=max_ep,
                    save_dir=save_dir,
                    ep_size=Mnist.train.num_batch,
                    log_interval=10)
Esempio n. 2
0
 def start_training(self):
     tf.sg_train(optim='Adam',
                 lr=0.0001,
                 loss=self.reduced_loss,
                 eval_metric=[self.reduced_loss],
                 ep_size=self.num_batch,
                 save_dir='save/train/small',
                 max_ep=self.max_ep,
                 early_stop=False)
Esempio n. 3
0
def train():
    g = ModelGraph()
    print "Graph loaded!"
    tf.sg_train(log_interval=10,
                loss=g.loss,
                eval_metric=[g.acc],
                max_ep=5,
                save_dir='asset/train',
                early_stop=False,
                max_keep=10)
Esempio n. 4
0
def main():
    g = Graph()

    tf.sg_train(log_interval=10,
                lr_reset=True,
                loss=g.reduced_loss,
                eval_metric=[g.acc_train, g.acc_val],
                ep_size=g.num_batch,
                save_dir='asset/train',
                max_ep=100,
                early_stop=False)
Esempio n. 5
0
def main():
    g = Graph()
    print("Graph Loaded")
    tf.sg_train(optim="Adam",
                lr=0.0001,
                lr_reset=True,
                loss=g.reduced_loss,
                ep_size=g.num_batch,
                save_dir='asset/train',
                max_ep=10,
                early_stop=False)
Esempio n. 6
0
def train():
    g = ModelGraph()
    print "Graph loaded!"

    tf.sg_train(lr=0.00001,
                lr_reset=True,
                log_interval=10,
                loss=g.ce,
                eval_metric=[g.acc],
                max_ep=5,
                save_dir='asset/train',
                early_stop=False,
                max_keep=5)
Esempio n. 7
0
def train():
    g = ModelGraph()
    print("Graph loaded!")

    tf.sg_train(optim="Adam",
                lr=0.00001,
                lr_reset=True,
                loss=g.reduced_loss,
                eval_metric=[],
                max_ep=20000,
                save_dir='asset/train',
                early_stop=False,
                ep_size=g.num_batch)
Esempio n. 8
0
def train():
    g = ModelGraph()
    print("Graph loaded!")

    if Hyperparams.isqwerty:
        save_dir = 'qwerty/asset/train'
    else:
        save_dir = 'nine/asset/train'

    tf.sg_train(lr=0.0001,
                lr_reset=True,
                log_interval=10,
                loss=g.reduced_loss,
                max_ep=50,
                save_dir=save_dir,
                early_stop=False,
                max_keep=5,
                ep_size=g.num_batch)
Esempio n. 9
0
# inputs
#

# corpus input tensor
data = SpeechCorpus(batch_size=batch_size * tf.sg_gpus())

# mfcc feature of audio
inputs = tf.split(data.mfcc, tf.sg_gpus(), axis=0)
# target sentence label
labels = tf.split(data.label, tf.sg_gpus(), axis=0)

# sequence length except zero-padding
seq_len = []
for input_ in inputs:
    seq_len.append(tf.not_equal(input_.sg_sum(axis=2), 0.).sg_int().sg_sum(axis=1))


# parallel loss tower
@tf.sg_parallel
def get_loss(opt):
    # encode audio feature
    logit = get_logit(opt.input[opt.gpu_index], voca_size=voca_size)
    # CTC loss
    return logit.sg_ctc(target=opt.target[opt.gpu_index], seq_len=opt.seq_len[opt.gpu_index])

#
# train
#
tf.sg_train(lr=0.0001, loss=get_loss(input=inputs, target=labels, seq_len=seq_len),
            ep_size=data.num_batch, max_ep=50)
Esempio n. 10
0
with tf.sg_context(name='encoder', size=4, stride=2, act='relu'):
    mu = (x.sg_conv(dim=64).sg_conv(dim=128).sg_flatten().sg_dense(
        dim=1024).sg_dense(dim=num_dim, act='linear'))

# re-parameterization trick with random gaussian
z = mu + tf.random_normal(mu.get_shape())

# decoder network
with tf.sg_context(name='decoder', size=4, stride=2, act='relu'):
    xx = (z.sg_dense(dim=1024).sg_dense(dim=7 * 7 * 128).sg_reshape(
        shape=(-1, 7, 7, 128)).sg_upconv(dim=64).sg_upconv(dim=1,
                                                           act='sigmoid'))

# add image summary
tf.sg_summary_image(x, name='origin')
tf.sg_summary_image(xx, name='recon')

# loss
loss_recon = xx.sg_mse(target=x, name='recon').sg_mean(axis=[1, 2, 3])
loss_kld = tf.square(mu).sg_sum(axis=1) / (28 * 28)
tf.sg_summary_loss(loss_kld, name='kld')
loss = loss_recon + loss_kld * 0.5

# do training
tf.sg_train(loss=loss,
            log_interval=10,
            ep_size=data.train.num_batch,
            max_ep=30,
            early_stop=False,
            save_dir='asset/train/vae')
Esempio n. 11
0
# simple wrapping function with decorator for parallel training
@tf.sg_parallel
def get_loss(opt):

    # conv layers
    with tf.sg_context(name='convs', act='relu', bn=True):
        conv = (opt.input[opt.gpu_index].sg_conv(
            dim=16, name='conv1').sg_pool().sg_conv(
                dim=32,
                name='conv2').sg_pool().sg_conv(dim=32,
                                                name='conv3').sg_pool())

    # fc layers
    with tf.sg_context(name='fcs', act='relu', bn=True):
        logit = (conv.sg_flatten().sg_dense(dim=256,
                                            name='fc1').sg_dense(dim=10,
                                                                 act='linear',
                                                                 bn=False,
                                                                 name='fc2'))

        # cross entropy loss with logit
        return logit.sg_ce(target=opt.target[opt.gpu_index])


# parallel training ( same as single GPU training )
tf.sg_train(loss=get_loss(input=inputs, target=labels),
            ep_size=data.train.num_batch,
            log_interval=10,
            save_dir='asset/train/conv_par')
Esempio n. 12
0
    out = out.sg_conv1d(size=1, dim=dim, act='tanh', bn=True)

    # residual and skip output
    return out + tensor, out


# expand dimension
z = x.sg_conv1d(size=1, dim=num_dim, act='tanh', bn=True)

# dilated conv block loop
skip = 0  # skip connections
for i in range(num_blocks):
    for r in [1, 2, 4, 8, 16]:
        z, s = res_block(z, size=7, rate=r)
        skip += s

# final logit layers
logit = (skip.sg_conv1d(size=1, act='tanh', bn=True).sg_conv1d(size=1,
                                                               dim=voca_size))

# CTC loss
loss = logit.sg_ctc(target=y, seq_len=seq_len)

# train
tf.sg_train(log_interval=30,
            lr=0.0001,
            loss=loss,
            ep_size=data.num_batch,
            max_ep=20,
            early_stop=False)
Esempio n. 13
0
import sugartensor as tf

__author__ = '*****@*****.**'

# set log level to debug
tf.sg_verbosity(10)

# MNIST input tensor ( with QueueRunner )
data = tf.sg_data.Mnist()

# inputs
x = data.train.image
y = data.train.label

# create training graph
with tf.sg_context(regularizer='l1'):
    logit = (x.sg_flatten().sg_dense(dim=400, act='relu', bn=True).sg_dense(
        dim=200, act='relu', bn=True).sg_dense(dim=10))

# cross entropy loss with logit ( for training set ) + L1 regularizer loss ( = sparsity regularizer )
loss = logit.sg_ce(target=y) + tf.sg_regularizer_loss(scale=1.)

# train
tf.sg_train(loss=loss,
            ep_size=data.train.num_batch,
            log_interval=10,
            save_dir='asset/train/l1_regul')
Esempio n. 14
0
import sugartensor as tf

# set log level to debug
tf.sg_verbosity(10)

# MNIST input tensor ( with QueueRunner )
data = tf.sg_data.Mnist()

# inputs
x = data.train.image
y = data.train.label

# create training graph
logit = (x.sg_flatten().sg_dense(dim=400, act='relu',
                                 bn=True).sg_dense(dim=200,
                                                   act='relu',
                                                   bn=True).sg_dense(dim=10))

# cross entropy loss with logit ( for training set )
loss = logit.sg_ce(target=y)

# accuracy evaluation ( for validation set )
acc = (logit.sg_reuse(input=data.valid.image).sg_softmax().sg_accuracy(
    target=data.valid.label, name='val'))

# train
tf.sg_train(loss=loss,
            eval_metric=[acc],
            ep_size=data.train.num_batch,
            log_interval=10)
Esempio n. 15
0
# set log level to debug
tf.sg_verbosity(10)

# MNIST input tensor ( with QueueRunner )
data = tf.sg_data.Mnist()

# inputs
x = data.train.image
y = data.train.label

# create training graph
with tf.sg_context(act='relu', bn=True):
    logit = (x.sg_conv(dim=16).sg_pool()
             .sg_conv(dim=32).sg_pool()
             .sg_conv(dim=32).sg_pool()
             .sg_flatten()
             .sg_dense(dim=256)
             .sg_dense(dim=10, act='linear', bn=False))

# cross entropy loss with logit ( for training set )
loss = logit.sg_ce(target=y)

# accuracy evaluation ( for validation set )
acc = (logit.sg_reuse(input=data.valid.image).sg_softmax()
       .sg_accuracy(target=data.valid.label, name='val'))

# train
tf.sg_train(loss=loss, eval_metric=[acc], ep_size=data.train.num_batch, save_dir='asset/train/conv')

Esempio n. 16
0
y_in = tf.concat([tf.zeros((batch_size, 1), tf.sg_intx), y[:, :-1]], axis=1)
# vocabulary size
voca_size = data.voca_size

# make embedding matrix for source and target
emb_x = tf.sg_emb(name='emb_x', voca_size=voca_size, dim=latent_dim)
emb_y = tf.sg_emb(name='emb_y', voca_size=voca_size, dim=latent_dim)

# latent from embed table
z_x = x.sg_lookup(emb=emb_x)
z_y = y_in.sg_lookup(emb=emb_y)

# encode graph ( atrous convolution )
enc = encode(z_x)

# concat merge target source
enc = enc.sg_concat(target=z_y)

# decode graph ( causal convolution )
dec = decode(enc, voca_size)

# cross entropy loss with logit and mask
loss = dec.sg_ce(target=y, mask=True)

# train
tf.sg_train(loss=loss,
            log_interval=30,
            lr=0.0001,
            ep_size=data.num_batch,
            max_ep=20)
Esempio n. 17
0
# -*- coding: utf-8 -*-
import sugartensor as tf

# set log level to debug
tf.sg_verbosity(10)

# MNIST input tensor ( with QueueRunner )
data = tf.sg_data.Mnist()

# inputs
x = data.train.image.sg_squeeze()
y = data.train.label

# create training graph ( GRU + layer normalization )
logit = (x.sg_gru(dim=200, ln=True, last_only=True).sg_dense(dim=10))

# cross entropy loss with logit ( for training set )
loss = logit.sg_ce(target=y)

# accuracy evaluation ( for validation set )
acc = (logit.sg_reuse(input=data.valid.image).sg_softmax().sg_accuracy(
    target=data.valid.label, name='val'))

# train
tf.sg_train(log_interval=10,
            loss=loss,
            eval_metric=[acc],
            ep_size=data.train.num_batch,
            save_dir='asset/train/rnn')
Esempio n. 18
0
model = ResNet()
inference_fn = model.inference

# logit = model.inference(x)

def my_loss(input_, labels, inference_fn, num_gpu=1):
    assert num_gpu >= 0
    tower_loss = []

    input_batch = tf.split(input_, num_gpu, axis=0)
    label_batch = tf.split(labels, num_gpu, axis=0)

    for i in range(num_gpu):
        with tf.device('/gpu:%d' % i):
            with tf.name_scope('gpu_%d' % i):
                reuse = False if i == 0 else True
                logit = inference_fn(input_batch[i], reuse=reuse)

                loss = tf.reduce_mean(tf.square(logit - label_batch[i]))
                tower_loss.append(loss)

    return tower_loss

loss = tf.reduce_mean(logit.sg_ce(target=tf.cast(y, tf.int32)))

sg.sg_train(loss=my_loss(input_=input_, labels=label, inference_fn=inference_fn, num_gpu=4), lr=0.0001, ep_size=data.num_batch, log_interval=10, save_dir='log', optim='sgd')

# tf.sg_train(loss=my_loss(input_=input_, labels=label, inference_fn=inference_fn, num_gpu=4), ep_size=data.num_batch, max_ep=120)

Esempio n. 19
0
#loss = logit.sg_ctc(target=y, seq_len=seq_len)
reg_lambda = 0.0002
trainable = tf.trainable_variables()
lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in trainable]) * reg_lambda
loss = logit.sg_ce(target=y, one_hot=True) + lossL2

# train
config = tf.ConfigProto(allow_soft_placement=True,
                        inter_op_parallelism_threads=6,
                        intra_op_parallelism_threads=6)
sess = tf.Session(config=config)
tf.sg_init(sess)

learning_rate = tf.train.exponential_decay(0.00001,
                                           tf.sg_global_step(),
                                           100,
                                           0.95,
                                           staircase=False)

with tf.name_scope('summaries'):
    tf.summary.scalar('global_step', tf.sg_global_step())
    tf.summary.scalar('real_lr', learning_rate)

tf.sg_train(log_interval=30,
            lr=learning_rate,
            loss=loss,
            ep_size=data.num_batch,
            max_ep=8,
            early_stop=False,
            lr_reset=True)
Esempio n. 20
0
# encoder network
with tf.sg_context(name='encoder', size=4, stride=2, act='relu'):
    z = (x
         .sg_conv(dim=64)
         .sg_conv(dim=128)
         .sg_flatten()
         .sg_dense(dim=1024)
         .sg_dense(dim=num_dim, act='linear'))

# decoder network
with tf.sg_context(name='decoder', size=4, stride=2, act='relu'):
    xx = (z
          .sg_dense(dim=1024)
          .sg_dense(dim=7*7*128)
          .sg_reshape(shape=(-1, 7, 7, 128))
          .sg_upconv(dim=64)
          .sg_upconv(dim=1, act='sigmoid'))

# add image summary
tf.sg_summary_image(x, name='origin')
tf.sg_summary_image(xx, name='recon')

# loss
loss = xx.sg_mse(target=x)


# do training
tf.sg_train(loss=loss, log_interval=10, ep_size=data.train.num_batch, save_dir='asset/train/sae')

    # encode audio feature
    with tf.variable_scope("model"):
        logit_clean = get_logit(opt.input[opt.gpu_index], voca_size=voca_size)
        loss_clean = logit_clean.sg_ctc(target=opt.target[opt.gpu_index],
                                        seq_len=opt.seq_len[opt.gpu_index])
    with tf.variable_scope("model", reuse=True):
        logit_noise = get_logit(opt.input_noise[opt.gpu_index],
                                voca_size=voca_size)
        loss_noise = logit_noise.sg_ctc(target=opt.target[opt.gpu_index],
                                        seq_len=opt.seq_len[opt.gpu_index])
    # CTC loss
    loss_penalize = penalize_loss(opt.gamma, opt.lambd, logit_clean,
                                  logit_noise)

    return loss_clean + opt.alpha * loss_noise + loss_penalize


#
# train
#
tf.sg_train(lr=0.0001,
            loss=get_loss(input=inputs,
                          input_noise=inputs_noise,
                          target=labels,
                          seq_len=seq_len,
                          alpha=1,
                          gamma=0.01,
                          lambd=0.01),
            ep_size=data.num_batch,
            max_ep=50)
Esempio n. 22
0
# mfcc feature of audio
inputs = tf.split(data.mfcc, tf.sg_gpus(), axis=0)
# target sentence label
labels = tf.split(data.label, tf.sg_gpus(), axis=0)

# sequence length except zero-padding
seq_len = []
for input_ in inputs:
    seq_len.append(
        tf.not_equal(input_.sg_sum(axis=2), 0.).sg_int().sg_sum(axis=1))


# parallel loss tower
@tf.sg_parallel
def get_loss(opt):
    # encode audio feature
    logit = get_logit(opt.input[opt.gpu_index], voca_size=voca_size)
    # CTC loss
    return logit.sg_ctc(target=opt.target[opt.gpu_index],
                        seq_len=opt.seq_len[opt.gpu_index])


#
# train
#
tf.sg_train(lr=0.0001,
            loss=get_loss(input=inputs, target=labels, seq_len=seq_len),
            ep_size=data.num_batch,
            max_ep=50)
Esempio n. 23
0
import tensorflow as tf
import sugartensor as sg
from input_data import Surv
from model import MLP

sg.sg_verbosity(10)
batch_size = 16

data = Surv()

x = data.data
y = data.label

model = MLP()

logit = model.inference(x)

loss = tf.reduce_mean(logit.sg_mse(target=tf.cast(y, tf.float32)))

sg.sg_train(loss=loss, ep_size=data.num_batch, log_interval=10, save_dir='log')