Esempio n. 1
0
c_map.set_alpha(1, 0.8)

# Create the figure
plt.close('all')
figure = plt.figure()
axes = figure.add_subplot(111)
if for_paper:
    observation = r"AIA {:s}".format(mc[0].measurement._repr_latex_())
    title = "wave progress map\n{:s}".format(observation)
    image_file_type = 'eps'
else:
    title = "{:s} ({:s})".format(observation_date, wave_name)
    image_file_type = 'png'
ret = c_map.plot(axes=axes, title=title)
c_map.draw_limb()
c_map.draw_grid()

# Set up the color bar
nticks = 6
timestamps_index = np.linspace(1, len(timestamps)-1, nticks, dtype=np.int).tolist()
cbar_tick_labels = []
for index in timestamps_index:
    wpm_time = timestamps[index].strftime("%H:%M:%S")
    cbar_tick_labels.append(wpm_time)
cbar = figure.colorbar(ret[1], ticks=timestamps_index)
cbar.ax.set_yticklabels(cbar_tick_labels)
cbar.set_label('time (UT) ({:s})'.format(observation_date))
cbar.set_clim(vmin=1, vmax=len(timestamps))

# Show the figure
plt.savefig(img_filepath + '_wave_progress_map.{:s}'.format(image_file_type))
Esempio n. 2
0
import matplotlib.pyplot as plt
from sunpy.map import Map
import sunpy.data.sample as s
import numpy as np
aia = Map(s.AIA_171_IMAGE)

fig, axs = plt.subplots(1, 2)
aia.plot(axes=axs[0])
aia.draw_grid()

r = [11.52, 10.42, 6.14, 3.64, 2.75]
e = [10, 20, 30, 40, 50]

pixel_size = 3.4
number_of_pixels = 160

center = np.array([461, 303])

line_color = 'w'

rect = plt.Rectangle(center - pixel_size * number_of_pixels / 2.,
                     pixel_size * number_of_pixels,
                     pixel_size * number_of_pixels,
                     fill=False,
                     color=line_color)
ax[0].add_artist(rect)

rect = plt.Rectangle(center - pixel_size / 2.,
                     pixel_size,
                     pixel_size,
                     fill=False,
Esempio n. 3
0
import matplotlib.pyplot as plt
from sunpy.map import Map
import sunpy.data.sample as s
import numpy as np
aia = Map(s.AIA_171_IMAGE)

fig, axs = plt.subplots(1,2)
aia.plot(axes=axs[0])
aia.draw_grid()

r = [11.52, 10.42, 6.14, 3.64, 2.75]
e = [10, 20, 30, 40, 50]

pixel_size = 3.4
number_of_pixels = 160

center = np.array([461, 303])

line_color = 'w'

rect = plt.Rectangle(center - pixel_size * number_of_pixels/2., pixel_size * number_of_pixels, pixel_size * number_of_pixels, fill=False, color=line_color)
ax[0].add_artist(rect)

rect = plt.Rectangle(center - pixel_size/2., pixel_size, pixel_size, fill=False, color=line_color)
ax[0].add_artist(rect)

for radius, energy in zip(r,e):
    circle = plt.Circle(center, radius=radius*60, fill=False, label=str(energy), color=line_color)
    ax[0].add_artist(circle)
plt.colorbar()
plt.legend()
Esempio n. 4
0
c_map = Map(sun_image, fp_map, best_long_score_map, composite=True)

# Create the figure
plt.close('all')
figure = plt.figure()
axes = figure.add_subplot(111)
if for_paper:
    observation = r"AIA {:s}".format(mc[0].measurement._repr_latex_())
    title = "wave fit map\n{:s}".format(observation)
    image_file_type = 'png'
else:
    title = "{:s} ({:s})".format(observation_date, wave_name)
    image_file_type = 'png'
ret = c_map.plot(axes=axes, title=title)
c_map.draw_limb(color='c')
c_map.draw_grid(color='c')

# Add a small circle to indicate the estimated epicenter of the wave
ip = SkyCoord(transform_hpc2hg_parameters['epi_lon'],
              transform_hpc2hg_parameters['epi_lat'],
              frame='heliographic_stonyhurst').transform_to(sun_image.coordinate_frame)
ccc = Circle((ip.Tx.value, ip.Ty.value), radius=50, edgecolor='w', fill=True, facecolor='c', zorder=1000)
axes.add_patch(ccc)

# Set up the color bar
nticks = 6
timestamps_index = np.linspace(1, len(timestamps)-1, nticks, dtype=np.int).tolist()
cbar_tick_labels = []
for index in timestamps_index:
    wpm_time = timestamps[index].strftime("%H:%M:%S")
    cbar_tick_labels.append(wpm_time)
Esempio n. 5
0
def prepData(files, base_dir, prefix, custom_keywords={}, plot=False):
    diffs = {'center_x': [], 'center_y': [], 'radius': [], 'scale': []}
    os.makedirs(os.path.join(base_dir, 'level1'), exist_ok=True)
    os.makedirs(os.path.join(base_dir, 'level1_5'), exist_ok=True)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        for file in tqdm(files):
            try:
                # load existing file
                hdul = fits.open(file)
                hdu = hdul[0]
                hdu.verify('fix')
                d, h = hdu.data, hdu.header

                # set custom keywords
                h.update(custom_keywords)

                # evaluate center and radius
                imsave("demo.jpg", d)
                myCmd = os.popen(
                    '/home/rja/PythonProjects/SpringProject/spring/limbcenter/sunlimb demo.jpg'
                ).read()
                center_x, center_y, radius, d_radius = map(
                    float, myCmd.splitlines())

                if "EXPTIME" in h:
                    h['EXP_TIME'] = h['EXPTIME']
                    del h['EXPTIME']
                if 'TIME-OBS' in h:
                    obs_date = datetime.strptime(
                        h['DATE-OBS'] + 'T' + h['TIME-OBS'],
                        "%m/%d/1%yT%H:%M:%S")
                    h['DATE-OBS'] = obs_date.isoformat()
                    del h["TIME-OBS"]
                if 'TIME' in h:
                    obs_date = datetime.strptime(
                        h['DATE-OBS'] + 'T' + h['TIME'], "%d/%m/%YT%H:%M:%S")
                    h['DATE-OBS'] = obs_date.isoformat()
                    del h["TIME"]

                obs_time = parse(h["DATE-OBS"])
                rsun = angular_radius(obs_time)
                b0_angle = sun.B0(obs_time)
                l0 = sun.L0(obs_time)
                p_angle = sun.P(obs_time)
                filename = "%s_%s_fi_%s.fits" % (
                    prefix, h["OBS_TYPE"].lower(),
                    obs_time.strftime("%Y%m%d_%H%M%S"))

                # prepare existing header information
                if "ANGLE" not in h:
                    h["ANGLE"] = p_angle.value

                scale = rsun / (radius * u.pix)
                coord = SkyCoord(0 * u.arcsec,
                                 0 * u.arcsec,
                                 obstime=obs_time,
                                 observer='earth',
                                 frame=frames.Helioprojective)

                # create WCS header info
                header = header_helper.make_fitswcs_header(
                    d,
                    coord,
                    rotation_angle=h["ANGLE"] * u.deg,
                    reference_pixel=u.Quantity([center_x, center_y] * u.pixel),
                    scale=u.Quantity([scale, scale]),
                    instrument=h["INSTRUME"],
                    telescope=h["TELESCOP"],
                    observatory=h["OBSVTRY"],
                    exposure=h["EXP_TIME"] * u.ms,
                    wavelength=h["WAVELNTH"] * u.angstrom)

                header["KEYCOMMENTS"] = {
                    "EXPTIME": "[s] exposure time in seconds",
                    "DATE": "file creation date (YYYY-MM-DDThh:mm:ss UT)",
                    "DATE-OBS": "date of observation",
                    "WAVELNTH": "[Angstrom] wavelength",
                    "BANDPASS": "******",
                    "WAVEMIN": "[Angstrom] minimum wavelength",
                    "WAVEMAX": "[Angstrom] maximum wavelength",
                    "BZERO": "offset data range to that of unsigned short",
                    "CDELT1": "[arcsec/pix]",
                    "CDELT2": "[arcsec/pix]",
                    "SOLAR_R": "[pix]",
                    "DSUN_OBS": "[m]",
                    "RSUN_REF": "[m]",
                    "RSUN_ARC": "[%s]" % rsun.unit,
                    "ANGLE": "[deg]",
                    "SOLAR_P": "[%s]" % p_angle.unit,
                    "SOLAR_L0": "[%s]" % l0.unit,
                    "SOLAR_B0": "[%s]" % b0_angle.unit,
                    'SIMPLE': 'file does conform to FITS standard',
                    'BITPIX': 'number of bits per data pixel',
                    'CUNIT1': '[arcsec]',
                    'CUNIT2': '[arcsec]',
                    'CRVAL1': 'coordinate system value at reference pixel',
                    'CRVAL2': 'coordinate system value at reference pixel',
                    'CTYPE1': 'name of the coordinate axis',
                    'CTYPE2': 'name of the coordinate axis',
                    'INSTRUME': 'name of instrument',
                    'TELESCOP': 'name of telescope',
                    'OBSVTRY': 'name of observatory',
                }

                # set constants and default values
                header["FILENAME"] = filename
                header["DATE"] = datetime.now().strftime("%Y-%m-%dT%H:%M:%S")

                header["SOLAR_R"] = radius
                header["RSUN_ARC"] = rsun.value
                header["SOLAR_P"] = p_angle.value
                header["SOLAR_L0"] = l0.value
                header["SOLAR_B0"] = b0_angle.value

                header["DATAMIN"] = np.min(d)
                header["DATAMEAN"] = np.mean(d)
                header["DATAMAX"] = np.max(d)

                # copy existing keys
                for key, value in h.items():
                    if key not in header:
                        header[key] = value

                # copy comments
                for key, value in zip(list(h.keys()), list(h.comments)):
                    if key not in header["KEYCOMMENTS"]:
                        header["KEYCOMMENTS"][key] = value

                # LEVEL 1
                s_map = Map(d.astype(np.float32), header)
                level1_path = os.path.join(base_dir, 'level1', filename)

                h.add_history("unified FITS header")
                s_map.meta["HISTORY"] = h["HISTORY"]
                s_map.meta["LVL_NUM"] = "1.0"
                s_map = Map(s_map.data.astype(np.float32), s_map.meta)
                s_map.save(level1_path, overwrite=True)

                # LEVEL 1.5
                scale = s_map.scale[0].value
                s_map = padScale(s_map)

                s_map = s_map.rotate(
                    recenter=True,
                    scale=scale,
                    missing=s_map.min(),
                )
                center = np.floor(s_map.meta['crpix1'])
                range_side = (center + np.array([-1, 1]) * 2048 / 2) * u.pix
                s_map = s_map.submap(
                    u.Quantity([range_side[0], range_side[0]]),
                    u.Quantity([range_side[1], range_side[1]]))
                level1_5_path = os.path.join(base_dir, 'level1_5', filename)

                h.add_history("recentered and derotated")
                s_map.meta["HISTORY"] = h["HISTORY"]
                s_map.meta["LVL_NUM"] = "1.5"
                s_map = Map(s_map.data.astype(np.float32), s_map.meta)
                s_map.save(level1_5_path, overwrite=True)

                if plot:
                    s_map.plot()
                    s_map.draw_grid()
                    plt.savefig(level1_5_path.replace(".fits", ".jpg"))
                    plt.close()

                # check header
                hdul = fits.open(level1_5_path)
                hdu = hdul[0]
                hdu.verify('exception')

                # evaluate difference
                if 'center_x' in h and not isinstance(h["center_x"], str):
                    diffs['center_x'].append(
                        np.abs(h['center_x'] - header['crpix1']))
                if 'center_y' in h and not isinstance(h["center_y"], str):
                    diffs['center_y'].append(
                        np.abs(h['center_y'] - header['crpix2']))
                if 'SOLAR_R' in h and not isinstance(h["SOLAR_R"], str):
                    diffs['radius'].append(
                        np.abs(h['SOLAR_R'] - header['SOLAR_R']))
                if 'cdelt1' in h and not isinstance(h["cdelt1"], str):
                    diffs['scale'].append(
                        np.abs(h['cdelt1'] - header['cdelt1']))
            except Exception as ex:
                print("INVALID FILE", file)
                print("ERROR:", ex)
        return diffs