Esempio n. 1
0
def reflectance_correction(rad_arr, lons, lats):
    '''Make satpy "reflectances" consistent with usual definition

    Reflectance is normally defined as outgoing radiation/incoming radiation.
    In satpy, the denominator is set to a fixed value - the incoming radiation 
    for a solar zenith angle of 0 and earth-sun distance of one. This function
    corrects this using the actual earth-sun distance and the solar zenith 
    angle appropriate for the observation time. See discussion at 
    https://github.com/pytroll/satpy/issues/536 for further details.
  
    Args:
        rad_arr (Xarray): Xarray for one of the two visible channels (0.6, 0.8)                           from satpy scene
        lons (ndarray, shape(nlat,nlon)): Array of longitude values 
        lats (ndarray, shape(nlat,nlon)): Array of longitude values

    Returns:
        rad_arr (Xarray): Input array, with reflectance corrected to account for
                          solar zenith angle and earth-sun distance. 

    '''
    from astropy.units import AU # Requires virtual environment
    from sunpy.sun import sunearth_distance # Requires virtual environment
    from pyorbital.astronomy import sun_zenith_angle
    nx = rad_arr.sizes['x']
    ny = rad_arr.sizes['y']
    mu0 = np.ma.zeros((ny,nx))
    dist_sun_earth = np.ma.zeros(ny)
    Tacq = rad_arr.attrs["end_time"] - rad_arr.attrs["start_time"]
    for j in range(ny) :
        tacq = rad_arr.attrs["start_time"] + datetime.timedelta( seconds=(j/float(ny))*Tacq.seconds )
        mu0[j,:] = np.ma.masked_outside( np.pi*sun_zenith_angle( tacq, lons[j,:], lats[j,:])/180.,0.035, 1, copy=False) # in degrees
        dist_sun_earth[j] = float(sunearth_distance(tacq) / AU)
    rad_arr.values *= ((dist_sun_earth[:,None]**2) / np.cos(mu0)) # sun earth distance in AU.
    return rad_arr
Esempio n. 2
0
def test_sunearth_distance():
    assert_array_almost_equal(sun.sunearth_distance("2010/02/04"), 0.9858, decimal=4)
    assert_array_almost_equal(sun.sunearth_distance("2009/04/13"), 1.003, decimal=4)
    assert_array_almost_equal(sun.sunearth_distance("2008/06/20"), 1.016, decimal=4)
    assert_array_almost_equal(sun.sunearth_distance("2007/08/15"), 1.013, decimal=4)
    assert_array_almost_equal(sun.sunearth_distance("2007/10/02"), 1.001, decimal=4)
    assert_array_almost_equal(sun.sunearth_distance("2006/12/27"), 0.9834, decimal=4)
Esempio n. 3
0
def test():
    """
    Print out a summary of Solar ephemeris
    
    A correct answer set to compare to

    Solar Ephemeris for  1-JAN-01  00:00:00
    
    Distance (AU) = 0.98330468
    Semidiameter (arc sec) = 975.92336
    True (long, lat) in degrees = (280.64366, 0.00000)
    Apparent (long, lat) in degrees = (280.63336, 0.00000)
    True (RA, Dec) in hrs, deg = (18.771741, -23.012449)
    Apparent (RA, Dec) in hrs, deg = (18.770994, -23.012593)
    Heliographic long. and lat. of disk center in deg = (217.31269, -3.0416292)
    Position angle of north pole in deg = 2.0102649
    Carrington Rotation Number = 1971.4091        check!
    
    """
    t = '2001-01-01T00:00:00'
    
    
    swpy_jd  = swdt.julian_day(t)
    sunpy_jd = sunt.julian_day(t)
    
    print "SWPY JD: {}, SUNPY JD: {}".format(swpy_jd,sunpy_jd)
    print "Sun-earth distance: {}, {}".format(
                                              sun.sunearth_distance(t),
                                              ssun.sunearth_distance(t))
    print "Solar semidiameter angular size: {}, {}".format(
                                                           sun.solar_semidiameter_angular_size(t),
                                                           sun.solar_semidiameter_angular_size(t))
    print "True longitude: {}, {}".format(sun.true_longitude(t),
                                          ssun.true_longitude(t))
    print "Apparent Longitude: {}, {}".format(sun.apparent_longitude(t),
                                              ssun.apparent_longitude(t))
    print "True R.A.: {}, {}".format(
                                     sun.true_rightascension(t),
                                     ssun.true_rightascension(t))
    print "True Dec.: {}, {}".format(sun.true_declination(t),
                                     ssun.true_declination(t))
    print "Apparent R.A.: {}, {}".format(
                                         sun.apparent_rightascension(t),
                                         ssun.apparent_rightascension(t))
    print "Apparent Dec.: {}, {}".format(sun.apparent_declination(t),
                                         ssun.apparent_declination(t))
    print "Heliographic center: {}, {}".format(sun.heliographic_solar_center(t),
                                               ssun.heliographic_solar_center(t))
    print "Position angle of north pole [deg]: {}, {}".format(sun.solar_north(t),
                                                              ssun.solar_north(t))
    print "Carrington rotation number: {}, {}".format(sun.carrington_rotation_number(t),
                                                      ssun.carrington_rotation_number(t))
Esempio n. 4
0
def plt_qlook_image(imres, figdir=None, verbose=True, synoptic=False):
    from matplotlib import pyplot as plt
    from sunpy import map as smap
    from sunpy import sun
    from matplotlib import colors
    import astropy.units as u
    from suncasa.utils import plot_mapX as pmX
    # from matplotlib import gridspec as gridspec

    if not figdir:
        figdir = './'

    nspw = len(set(imres['Spw']))
    plttimes = list(set(imres['BeginTime']))
    ntime = len(plttimes)
    # sort the imres according to time
    images = np.array(imres['ImageName'])
    btimes = Time(imres['BeginTime'])
    etimes = Time(imres['EndTime'])
    spws = np.array(imres['Spw'])
    suc = np.array(imres['Succeeded'])
    inds = btimes.argsort()
    images_sort = images[inds].reshape(ntime, nspw)
    btimes_sort = btimes[inds].reshape(ntime, nspw)
    suc_sort = suc[inds].reshape(ntime, nspw)
    if verbose:
        print('{0:d} figures to plot'.format(ntime))
    plt.ioff()
    fig = plt.figure(figsize=(8, 8))

    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
    axs = []
    ims = []
    pltst = 0
    for i in range(ntime):
        plt.ioff()
        plttime = btimes_sort[i, 0]
        tofd = plttime.mjd - np.fix(plttime.mjd)
        suci = suc_sort[i]
        if not synoptic:
            if tofd < 16. / 24. or sum(
                    suci
            ) < nspw - 2:  # if time of the day is before 16 UT (and 24 UT), skip plotting (because the old antennas are not tracking)
                continue
            else:
                if pltst == 0:
                    i0 = i
                    pltst = 1
        else:
            if pltst == 0:
                i0 = i
                pltst = 1
        if i == i0:
            if synoptic:
                timetext = fig.text(0.01,
                                    0.98,
                                    plttime.iso[:10],
                                    color='w',
                                    fontweight='bold',
                                    fontsize=12,
                                    ha='left')
            else:
                timetext = fig.text(0.01,
                                    0.98,
                                    plttime.iso[:19],
                                    color='w',
                                    fontweight='bold',
                                    fontsize=12,
                                    ha='left')
        else:
            if synoptic:
                timetext.set_text(plttime.iso[:10])
            else:
                timetext.set_text(plttime.iso[:19])
        if verbose:
            print('Plotting image at: ', plttime.iso)
        for n in range(nspw):
            plt.ioff()
            if i == i0:
                if nspw == 1:
                    ax = fig.add_subplot(111)
                else:
                    ax = fig.add_subplot(nspw / 2, 2, n + 1)
                axs.append(ax)
            else:
                ax = axs[n]
            image = images_sort[i, n]
            if suci[n] or os.path.exists(image):
                try:
                    eomap = smap.Map(image)
                except:
                    continue
                data = eomap.data
                sz = data.shape
                if len(sz) == 4:
                    data = data.reshape((sz[2], sz[3]))
                data[np.isnan(data)] = 0.0
                # add a basin flux to the image to avoid negative values
                data = data + 0.8e5
                data[data < 0] = 0.0
                data = np.sqrt(data)
                eomap = smap.Map(data, eomap.meta)
                # resample the image for plotting
                dim = u.Quantity([256, 256], u.pixel)
                eomap = eomap.resample(dim)
            else:
                # make an empty map
                data = np.zeros((256, 256))
                header = {
                    "DATE-OBS": plttime.isot,
                    "EXPTIME": 0.,
                    "CDELT1": 10.,
                    "NAXIS1": 256,
                    "CRVAL1": 0.,
                    "CRPIX1": 128.5,
                    "CUNIT1": "arcsec",
                    "CTYPE1": "HPLN-TAN",
                    "CDELT2": 10.,
                    "NAXIS2": 256,
                    "CRVAL2": 0.,
                    "CRPIX2": 128.5,
                    "CUNIT2": "arcsec",
                    "CTYPE2": "HPLT-TAN",
                    "HGLT_OBS":
                    sun.heliographic_solar_center(plttime)[1].value,
                    "HGLN_OBS": 0.,
                    "RSUN_OBS":
                    sun.solar_semidiameter_angular_size(plttime).value,
                    "RSUN_REF": sun.constants.radius.value,
                    "DSUN_OBS":
                    sun.sunearth_distance(plttime).to(u.meter).value,
                }
                eomap = smap.Map(data, header)
            if i == i0:
                eomap_ = pmX.Sunmap(eomap)
                # im = eomap_.imshow(axes=ax, cmap='jet', norm=colors.LogNorm(vmin=0.1, vmax=1e8))
                im = eomap_.imshow(axes=ax,
                                   cmap='jet',
                                   norm=colors.Normalize(vmin=150, vmax=700))
                ims.append(im)
                if not synoptic:
                    eomap_.draw_limb(axes=ax)
                eomap_.draw_grid(axes=ax)
                ax.set_xlim([-1080, 1080])
                ax.set_ylim([-1080, 1080])
                try:
                    cfreq = eomap.meta['crval3'] / 1.0e9
                    bdwid = eomap.meta['cdelt3'] / 1.0e9
                    ax.text(0.98,
                            0.01,
                            '{0:.1f} - {1:.1f} GHz'.format(
                                cfreq - bdwid / 2.0, cfreq + bdwid / 2.0),
                            color='w',
                            transform=ax.transAxes,
                            fontweight='bold',
                            ha='right')
                except:
                    pass
                ax.set_title(' ')
                ax.set_xlabel('')
                ax.set_ylabel('')
                ax.set_xticklabels([''])
                ax.set_yticklabels([''])
            else:
                ims[n].set_data(eomap.data)

        fig_tdt = plttime.to_datetime()
        if synoptic:
            fig_subdir = fig_tdt.strftime("%Y/")
            figname = 'eovsa_qlimg_' + plttime.iso[:10].replace('-',
                                                                '') + '.png'
        else:
            fig_subdir = fig_tdt.strftime("%Y/%m/%d/")
            figname = 'eovsa_qlimg_' + plttime.isot.replace(':', '').replace(
                '-', '')[:15] + '.png'
        figdir_ = figdir + fig_subdir
        if not os.path.exists(figdir_):
            os.makedirs(figdir_)
        if verbose:
            print('Saving plot to :' + figdir_ + figname)

        plt.savefig(figdir_ + figname)
    plt.close(fig)
Esempio n. 5
0
def imreg(vis=None,
          ephem=None,
          msinfo=None,
          imagefile=None,
          timerange=None,
          reftime=None,
          fitsfile=None,
          beamfile=None,
          offsetfile=None,
          toTb=None,
          sclfactor=1.0,
          verbose=False,
          p_ang=False,
          overwrite=True,
          usephacenter=True,
          deletehistory=False,
          subregion=[],
          docompress=False):
    ''' 
    main routine to register CASA images
           Required Inputs:
               vis: STRING. CASA measurement set from which the image is derived
               imagefile: STRING or LIST. name of the input CASA image
               timerange: STRING or LIST. timerange used to generate the CASA image, must have the same length as the input images. 
                          Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00~2012/03/03/13:00:00'
           Optional Inputs:
               msinfo: DICTIONARY. CASA MS information, output from read_msinfo. If not provided, generate one from the supplied vis
               ephem: DICTIONARY. solar ephem, output from read_horizons. 
                      If not provided, query JPL Horizons based on time info of the vis (internet connection required)
               fitsfile: STRING or LIST. name of the output registered fits files
               reftime: STRING or LIST. Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00'
               offsetfile: optionally provide an offset with a series of solar x and y offsets with timestamps 
               toTb: Bool. Convert the default Jy/beam to brightness temperature?
               sclfactor: scale the image values up by its value (to compensate VLA 20 dB attenuator)
               verbose: Bool. Show more diagnostic info if True.
               usephacenter: Bool -- if True, correct for the RA and DEC in the ms file based on solar empheris.
                                     Otherwise assume the phasecenter is correctly pointed to the solar disk center
                                     (EOVSA case)
               subregion: Region selection. See 'help par.region' for details.
    Usage:
    >>> from suncasa.utils import helioimage2fits as hf
    >>> hf.imreg(vis='mydata.ms', imagefile='myimage.image', fitsfile='myimage.fits',
                 timerange='2017/08/21/20:21:10~2017/08/21/20:21:18')
    The output fits file is 'myimage.fits'

    History:
    BC (sometime in 2014): function was first wrote, followed by a number of edits by BC and SY
    BC (2019-07-16): Added checks for stokes parameter. Verified that for converting from Jy/beam to brightness temperature,
                     the convention of 2*k_b*T should always be used. I.e., for unpolarized source, stokes I, RR, LL, XX, YY, 
                     etc. in the output CASA images from (t)clean should all have same values of radio intensity 
                     (in Jy/beam) and brightness temperature (in K).

    '''

    if deletehistory:
        ms_clearhistory(vis)

    if not imagefile:
        raise ValueError('Please specify input image')
    if not timerange:
        raise ValueError('Please specify timerange of the input image')
    if type(imagefile) == str:
        imagefile = [imagefile]
    if type(timerange) == str:
        timerange = [timerange]
    if not fitsfile:
        fitsfile = [img + '.fits' for img in imagefile]
    if type(fitsfile) == str:
        fitsfile = [fitsfile]
    nimg = len(imagefile)
    if len(timerange) != nimg:
        raise ValueError(
            'Number of input images does not equal to number of timeranges!')
    if len(fitsfile) != nimg:
        raise ValueError(
            'Number of input images does not equal to number of output fits files!'
        )
    nimg = len(imagefile)
    if verbose:
        print(str(nimg) + ' images to process...')

    if reftime:  # use as reference time to find solar disk RA and DEC to register the image, but not the actual timerange associated with the image
        if type(reftime) == str:
            reftime = [reftime] * nimg
        if len(reftime) != nimg:
            raise ValueError(
                'Number of reference times does not match that of input images!'
            )
        helio = ephem_to_helio(vis,
                               ephem=ephem,
                               msinfo=msinfo,
                               reftime=reftime,
                               usephacenter=usephacenter)
    else:
        # use the supplied timerange to register the image
        helio = ephem_to_helio(vis,
                               ephem=ephem,
                               msinfo=msinfo,
                               reftime=timerange,
                               usephacenter=usephacenter)

    if toTb:
        (bmajs, bmins, bpas, beamunits,
         bpaunits) = getbeam(imagefile=imagefile, beamfile=beamfile)

    for n, img in enumerate(imagefile):
        if verbose:
            print('processing image #' + str(n) + ' ' + img)
        fitsf = fitsfile[n]
        timeran = timerange[n]
        # obtain duration of the image as FITS header exptime
        try:
            [tbg0, tend0] = timeran.split('~')
            tbg_d = qa.getvalue(qa.convert(qa.totime(tbg0), 'd'))[0]
            tend_d = qa.getvalue(qa.convert(qa.totime(tend0), 'd'))[0]
            tdur_s = (tend_d - tbg_d) * 3600. * 24.
            dateobs = qa.time(qa.quantity(tbg_d, 'd'), form='fits', prec=10)[0]
        except:
            print('Error in converting the input timerange: ' + str(timeran) +
                  '. Proceeding to the next image...')
            continue

        hel = helio[n]
        if not os.path.exists(img):
            warnings.warn('{} does not existed!'.format(img))
        else:
            if os.path.exists(fitsf) and not overwrite:
                raise ValueError(
                    'Specified fits file already exists and overwrite is set to False. Aborting...'
                )
            else:
                p0 = hel['p0']
                tb.open(img + '/logtable', nomodify=False)
                nobs = tb.nrows()
                tb.removerows([i + 1 for i in range(nobs - 1)])
                tb.close()
                ia.open(img)
                imr = ia.rotate(pa=str(-p0) + 'deg')
                if subregion is not []:
                    imr = imr.subimage(region=subregion)
                imr.tofits(fitsf, history=False, overwrite=overwrite)
                imr.close()
                imsum = ia.summary()
                ia.close()
                ia.done()

            # construct the standard fits header
            # RA and DEC of the reference pixel crpix1 and crpix2
            (imra, imdec) = (imsum['refval'][0], imsum['refval'][1])
            # find out the difference of the image center to the CASA phase center
            # RA and DEC difference in arcseconds
            ddec = degrees((imdec - hel['dec_fld'])) * 3600.
            dra = degrees((imra - hel['ra_fld']) * cos(hel['dec_fld'])) * 3600.
            # Convert into image heliocentric offsets
            prad = -radians(hel['p0'])
            dx = (-dra) * cos(prad) - ddec * sin(prad)
            dy = (-dra) * sin(prad) + ddec * cos(prad)
            if offsetfile:
                try:
                    offset = np.load(offsetfile)
                except:
                    raise ValueError(
                        'The specified offsetfile does not exist!')
                reftimes_d = offset['reftimes_d']
                xoffs = offset['xoffs']
                yoffs = offset['yoffs']
                timg_d = hel['reftime']
                ind = bisect.bisect_left(reftimes_d, timg_d)
                xoff = xoffs[ind - 1]
                yoff = yoffs[ind - 1]
            else:
                xoff = hel['refx']
                yoff = hel['refy']
            if verbose:
                print(
                    'offset of image phase center to visibility phase center (arcsec): dx={0:.2f}, dy={1:.2f}'
                    .format(dx, dy))
                print(
                    'offset of visibility phase center to solar disk center (arcsec): dx={0:.2f}, dy={1:.2f}'
                    .format(xoff, yoff))
            (crval1, crval2) = (xoff + dx, yoff + dy)
            # update the fits header to heliocentric coordinates

            hdu = pyfits.open(fitsf, mode='update')
            hdu[0].verify('fix')
            header = hdu[0].header
            dshape = hdu[0].data.shape
            ndim = hdu[0].data.ndim
            (cdelt1,
             cdelt2) = (-header['cdelt1'] * 3600., header['cdelt2'] * 3600.
                        )  # Original CDELT1, 2 are for RA and DEC in degrees
            header['cdelt1'] = cdelt1
            header['cdelt2'] = cdelt2
            header['cunit1'] = 'arcsec'
            header['cunit2'] = 'arcsec'
            header['crval1'] = crval1
            header['crval2'] = crval2
            header['ctype1'] = 'HPLN-TAN'
            header['ctype2'] = 'HPLT-TAN'
            header['date-obs'] = dateobs  # begin time of the image
            if not p_ang:
                hel['p0'] = 0
            try:
                # this works for pyfits version of CASA 4.7.0 but not CASA 4.6.0
                if tdur_s:
                    header.set('exptime', tdur_s)
                else:
                    header.set('exptime', 1.)
                header.set('p_angle', hel['p0'])
                header.set('hgln_obs', 0.)
                header.set('rsun_ref', sun.constants.radius.value)
                if sunpyver <= 1:
                    header.set(
                        'dsun_obs',
                        sun.sunearth_distance(Time(dateobs)).to(u.meter).value)
                    header.set(
                        'rsun_obs',
                        sun.solar_semidiameter_angular_size(
                            Time(dateobs)).value)
                    header.set(
                        'hglt_obs',
                        sun.heliographic_solar_center(Time(dateobs))[1].value)
                else:
                    header.set(
                        'dsun_obs',
                        sun.earth_distance(Time(dateobs)).to(u.meter).value)
                    header.set('rsun_obs',
                               sun.angular_radius(Time(dateobs)).value)
                    header.set('hglt_obs', sun.L0(Time(dateobs)).value)
            except:
                # this works for astropy.io.fits
                if tdur_s:
                    header.append(('exptime', tdur_s))
                else:
                    header.append(('exptime', 1.))
                header.append(('p_angle', hel['p0']))
                header.append(('hgln_obs', 0.))
                header.append(('rsun_ref', sun.constants.radius.value))
                if sunpyver <= 1:
                    header.append(
                        ('dsun_obs', sun.sunearth_distance(Time(dateobs)).to(
                            u.meter).value))
                    header.append(('rsun_obs',
                                   sun.solar_semidiameter_angular_size(
                                       Time(dateobs)).value))
                    header.append(('hglt_obs',
                                   sun.heliographic_solar_center(
                                       Time(dateobs))[1].value))
                else:
                    header.append(
                        ('dsun_obs',
                         sun.earth_distance(Time(dateobs)).to(u.meter).value))
                    header.append(
                        ('rsun_obs', sun.angular_radius(Time(dateobs)).value))
                    header.append(('hglt_obs', sun.L0(Time(dateobs)).value))

            # check if stokes parameter exist
            exist_stokes = False
            stokes_mapper = {
                'I': 1,
                'Q': 2,
                'U': 3,
                'V': 4,
                'RR': -1,
                'LL': -2,
                'RL': -3,
                'LR': -4,
                'XX': -5,
                'YY': -6,
                'XY': -7,
                'YX': -8
            }
            if 'CRVAL3' in header.keys():
                if header['CTYPE3'] == 'STOKES':
                    stokenum = header['CRVAL3']
                    exist_stokes = True
            if 'CRVAL4' in header.keys():
                if header['CTYPE4'] == 'STOKES':
                    stokenum = header['CRVAL4']
                    exist_stokes = True
            if exist_stokes:
                if stokenum in stokes_mapper.values():
                    stokesstr = list(stokes_mapper.keys())[list(
                        stokes_mapper.values()).index(stokenum)]
                else:
                    print('Stokes parameter {0:d} not recognized'.format(
                        stokenum))
                if verbose:
                    print('This image is in Stokes ' + stokesstr)
            else:
                print(
                    'STOKES Information does not seem to exist! Assuming Stokes I'
                )
                stokenum = 1

            # intensity units to brightness temperature
            if toTb:
                # get restoring beam info
                bmaj = bmajs[n]
                bmin = bmins[n]
                beamunit = beamunits[n]
                data = hdu[
                    0].data  # remember the data order is reversed due to the FITS convension
                keys = list(header.keys())
                values = list(header.values())
                # which axis is frequency?
                faxis = keys[values.index('FREQ')][-1]
                faxis_ind = ndim - int(faxis)
                # find out the polarization of this image
                k_b = qa.constants('k')['value']
                c_l = qa.constants('c')['value']
                # Always use 2*kb for all polarizations
                const = 2. * k_b / c_l**2
                if header['BUNIT'].lower() == 'jy/beam':
                    header['BUNIT'] = 'K'
                    header['BTYPE'] = 'Brightness Temperature'
                    for i in range(dshape[faxis_ind]):
                        nu = header['CRVAL' +
                                    faxis] + header['CDELT' + faxis] * (
                                        i + 1 - header['CRPIX' + faxis])
                        if header['CUNIT' + faxis] == 'KHz':
                            nu *= 1e3
                        if header['CUNIT' + faxis] == 'MHz':
                            nu *= 1e6
                        if header['CUNIT' + faxis] == 'GHz':
                            nu *= 1e9
                        if len(bmaj) > 1:  # multiple (per-plane) beams
                            bmajtmp = bmaj[i]
                            bmintmp = bmin[i]
                        else:  # one single beam
                            bmajtmp = bmaj[0]
                            bmintmp = bmin[0]
                        if beamunit == 'arcsec':
                            bmaj0 = np.radians(bmajtmp / 3600.)
                            bmin0 = np.radians(bmintmp / 3600.)
                        if beamunit == 'arcmin':
                            bmaj0 = np.radians(bmajtmp / 60.)
                            bmin0 = np.radians(bmintmp / 60.)
                        if beamunit == 'deg':
                            bmaj0 = np.radians(bmajtmp)
                            bmin0 = np.radians(bmintmp)
                        if beamunit == 'rad':
                            bmaj0 = bmajtmp
                            bmin0 = bmintmp
                        beam_area = bmaj0 * bmin0 * np.pi / (4. * log(2.))
                        factor = const * nu**2  # SI unit
                        jy_to_si = 1e-26
                        # print(nu/1e9, beam_area, factor)
                        factor2 = sclfactor
                        # if sclfactor:
                        #     factor2 = 100.
                        if faxis == '3':
                            data[:,
                                 i, :, :] *= jy_to_si / beam_area / factor * factor2
                        if faxis == '4':
                            data[
                                i, :, :, :] *= jy_to_si / beam_area / factor * factor2

            header = fu.headerfix(header)
            hdu.flush()
            hdu.close()

            if ndim - np.count_nonzero(np.array(dshape) == 1) > 3:
                docompress = False
                '''
                    Caveat: only 1D, 2D, or 3D images are currently supported by
                    the astropy fits compression. If a n-dimensional image data array
                    does not have at least n-3 single-dimensional entries,
                    force docompress to be False
                '''

                print(
                    'warning: The fits data contains more than 3 non squeezable dimensions. Skipping fits compression..'
                )
            if docompress:
                fitsftmp = fitsf + ".tmp.fits"
                os.system("mv {} {}".format(fitsf, fitsftmp))
                hdu = pyfits.open(fitsftmp)
                hdu[0].verify('fix')
                header = hdu[0].header
                data = hdu[0].data
                fu.write_compressed_image_fits(fitsf,
                                               data,
                                               header,
                                               compression_type='RICE_1',
                                               quantize_level=4.0)
                os.system("rm -rf {}".format(fitsftmp))
    if deletehistory:
        ms_restorehistory(vis)
    return fitsfile
Esempio n. 6
0
def plt_qlook_image(imres, figdir=None, verbose=True, synoptic=False):
    from matplotlib import pyplot as plt
    from sunpy import map as smap
    from sunpy import sun
    from matplotlib import colors
    import astropy.units as u
    if not figdir:
        figdir = './'
    nspw = len(set(imres['Spw']))
    plttimes = list(set(imres['BeginTime']))
    ntime = len(plttimes)
    # sort the imres according to time
    images = np.array(imres['ImageName'])
    btimes = Time(imres['BeginTime'])
    etimes = Time(imres['EndTime'])
    spws = np.array(imres['Spw'])
    suc = np.array(imres['Succeeded'])
    inds = btimes.argsort()
    images_sort = images[inds].reshape(ntime, nspw)
    btimes_sort = btimes[inds].reshape(ntime, nspw)
    suc_sort = suc[inds].reshape(ntime, nspw)
    spws_sort = spws[inds].reshape(ntime, nspw)
    if verbose:
        print '{0:d} figures to plot'.format(ntime)
    plt.ioff()
    fig = plt.figure(figsize=(8, 8))
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
    for i in range(ntime):
        plt.ioff()
        plt.clf()
        plttime = btimes_sort[i, 0]
        tofd = plttime.mjd - np.fix(plttime.mjd)
        suci = suc_sort[i]
        if not synoptic:
            if tofd < 16. / 24. or sum(
                    suci
            ) < nspw - 2:  # if time of the day is before 16 UT (and 24 UT), skip plotting (because the old antennas are not tracking)
                continue
        #fig=plt.figure(figsize=(9,6))
        #fig.suptitle('EOVSA @ '+plttime.iso[:19])
        if synoptic:
            fig.text(0.01,
                     0.98,
                     plttime.iso[:10],
                     color='w',
                     fontweight='bold',
                     fontsize=12,
                     ha='left')
        else:
            fig.text(0.01,
                     0.98,
                     plttime.iso[:19],
                     color='w',
                     fontweight='bold',
                     fontsize=12,
                     ha='left')
        if verbose:
            print 'Plotting image at: ', plttime.iso
        for n in range(nspw):
            plt.ioff()
            image = images_sort[i, n]
            #fig.add_subplot(nspw/3, 3, n+1)
            fig.add_subplot(nspw / 2, 2, n + 1)
            if suci[n]:
                try:
                    eomap = smap.Map(image)
                except:
                    continue
                sz = eomap.data.shape
                if len(sz) == 4:
                    eomap.data = eomap.data.reshape((sz[2], sz[3]))
                eomap.data[np.isnan(eomap.data)] = 0.0
                #resample the image for plotting
                dim = u.Quantity([256, 256], u.pixel)
                eomap = eomap.resample(dim)
                eomap.plot_settings['cmap'] = plt.get_cmap('jet')
                eomap.plot_settings['norm'] = colors.Normalize(vmin=-1e5,
                                                               vmax=1e6)
                eomap.plot()
                if not synoptic:
                    eomap.draw_limb()
                eomap.draw_grid()
                ax = plt.gca()
                ax.set_xlim([-1080, 1080])
                ax.set_ylim([-1080, 1080])
                spwran = spws_sort[i, n]
                freqran = [int(s) * 0.5 + 2.9 for s in spwran.split('~')]
                ax.text(0.98,
                        0.01,
                        '{0:.1f} - {1:.1f} GHz'.format(freqran[0], freqran[1]),
                        color='w',
                        transform=ax.transAxes,
                        fontweight='bold',
                        ha='right')
                ax.set_title(' ')
                #ax.set_title('spw '+spws_sort[i,n])
                #ax.text(0.01,0.02, plttime.isot,transform=ax.transAxes,color='white')
                ax.set_xlabel('')
                ax.set_ylabel('')
                ax.set_xticklabels([''])
                ax.set_yticklabels([''])
            else:
                #make an empty map
                data = np.zeros((512, 512))
                header = {
                    "DATE-OBS": plttime.isot,
                    "EXPTIME": 0.,
                    "CDELT1": 5.,
                    "NAXIS1": 512,
                    "CRVAL1": 0.,
                    "CRPIX1": 257,
                    "CUNIT1": "arcsec",
                    "CTYPE1": "HPLN-TAN",
                    "CDELT2": 5.,
                    "NAXIS2": 512,
                    "CRVAL2": 0.,
                    "CRPIX2": 257,
                    "CUNIT2": "arcsec",
                    "CTYPE2": "HPLT-TAN",
                    "HGLT_OBS":
                    sun.heliographic_solar_center(plttime)[1].value,
                    "HGLN_OBS": 0.,
                    "RSUN_OBS":
                    sun.solar_semidiameter_angular_size(plttime).value,
                    "RSUN_REF": sun.constants.radius.value,
                    "DSUN_OBS":
                    sun.sunearth_distance(plttime).to(u.meter).value,
                }
                eomap = smap.Map(data, header)
                eomap.plot_settings['cmap'] = plt.get_cmap('jet')
                eomap.plot_settings['norm'] = colors.Normalize(vmin=-1e5,
                                                               vmax=1e6)
                eomap.plot()
                if not synoptic:
                    eomap.draw_limb()
                eomap.draw_grid()
                ax = plt.gca()
                ax.set_xlim([-1080, 1080])
                ax.set_ylim([-1080, 1080])
                #ax.set_title('spw '+spwran+'( )'))
                spwran = spws_sort[i, n]
                freqran = [int(s) * 0.5 + 2.9 for s in spwran.split('~')]
                spwran = spws_sort[i, n]
                #ax.set_title('{0:.1f} - {1:.1f} GHz'.format(freqran[0],freqran[1]))
                ax.text(0.98,
                        0.01,
                        '{0:.1f} - {1:.1f} GHz'.format(freqran[0], freqran[1]),
                        color='w',
                        transform=ax.transAxes,
                        fontweight='bold',
                        ha='right')
                ax.set_title(' ')

                #ax.text(0.01,0.02, plttime.isot,transform=ax.transAxes,color='white')
                ax.set_xlabel('')
                ax.set_ylabel('')
                ax.set_xticklabels([''])
                ax.set_yticklabels([''])
        fig_tdt = plttime.to_datetime()
        if synoptic:
            fig_subdir = fig_tdt.strftime("%Y/")
            figname = 'eovsa_qlimg_' + plttime.iso[:10].replace('-',
                                                                '') + '.png'
        else:
            fig_subdir = fig_tdt.strftime("%Y/%m/%d/")
            figname = 'eovsa_qlimg_' + plttime.isot.replace(':', '').replace(
                '-', '')[:15] + '.png'
        figdir_ = figdir + fig_subdir
        if not os.path.exists(figdir_):
            os.makedirs(figdir_)
        if verbose:
            print 'Saving plot to :' + figdir_ + figname
        plt.savefig(figdir_ + figname)
    plt.close(fig)
Esempio n. 7
0
def imreg(vis=None, ephem=None, msinfo=None, reftime=None, imagefile=None, fitsfile=None, beamfile=None, \
          offsetfile=None, toTb=None, scl100=None, verbose=False, p_ang = False, overwrite = True, usephacenter=False):
    ia = iatool()
    if not imagefile:
        raise ValueError, 'Please specify input image'
    if not reftime:
        raise ValueError, 'Please specify reference time corresponding to the input image'
    if not fitsfile:
        fitsfile = [img + '.fits' for img in imagefile]
    if len(imagefile) != len(reftime):
        raise ValueError, 'Number of input images does not equal to number of helio coord headers!'
    if len(imagefile) != len(fitsfile):
        raise ValueError, 'Number of input images does not equal to number of output fits files!'
    nimg = len(imagefile)
    if verbose:
        print str(nimg) + ' images to process...'
    helio = ephem_to_helio(vis,
                           ephem=ephem,
                           msinfo=msinfo,
                           reftime=reftime,
                           usephacenter=usephacenter)
    for n, img in enumerate(imagefile):
        if verbose:
            print 'processing image #' + str(n)
        fitsf = fitsfile[n]
        hel = helio[n]
        if not os.path.exists(img):
            raise ValueError, 'Please specify input image'
        if os.path.exists(fitsf) and not overwrite:
            raise ValueError, 'Specified fits file already exists and overwrite is set to False. Aborting...'
        else:
            p0 = hel['p0']
            ia.open(img)
            imr = ia.rotate(pa=str(-p0) + 'deg')
            imr.tofits(fitsf, history=False, overwrite=overwrite)
            imr.close()
            sum = ia.summary()
            ia.close()
        # construct the standard fits header
        # RA and DEC of the reference pixel crpix1 and crpix2
        (imra, imdec) = (sum['refval'][0], sum['refval'][1])
        # find out the difference of the image center to the CASA phase center
        # RA and DEC difference in arcseconds
        ddec = degrees((imdec - hel['dec_fld'])) * 3600.
        dra = degrees((imra - hel['ra_fld']) * cos(hel['dec_fld'])) * 3600.
        # Convert into image heliocentric offsets
        prad = -radians(hel['p0'])
        dx = (-dra) * cos(prad) - ddec * sin(prad)
        dy = (-dra) * sin(prad) + ddec * cos(prad)
        if offsetfile:
            try:
                offset = np.load(offsetfile)
            except:
                raise ValueError, 'The specified offsetfile does not exist!'
            reftimes_d = offset['reftimes_d']
            xoffs = offset['xoffs']
            yoffs = offset['yoffs']
            timg_d = hel['reftime']
            ind = bisect.bisect_left(reftimes_d, timg_d)
            xoff = xoffs[ind - 1]
            yoff = yoffs[ind - 1]
        else:
            xoff = hel['refx']
            yoff = hel['refy']
        if verbose:
            print 'offset of image phase center to visibility phase center (arcsec): ', dx, dy
            print 'offset of visibility phase center to solar disk center (arcsec): ', xoff, yoff
        (crval1, crval2) = (xoff + dx, yoff + dy)
        # update the fits header to heliocentric coordinates

        hdu = pyfits.open(fitsf, mode='update')
        header = hdu[0].header
        (cdelt1,
         cdelt2) = (-header['cdelt1'] * 3600., header['cdelt2'] * 3600.
                    )  # Original CDELT1, 2 are for RA and DEC in degrees
        header['cdelt1'] = cdelt1
        header['cdelt2'] = cdelt2
        header['cunit1'] = 'arcsec'
        header['cunit2'] = 'arcsec'
        header['crval1'] = crval1
        header['crval2'] = crval2
        header['ctype1'] = 'HPLN-TAN'
        header['ctype2'] = 'HPLT-TAN'
        header['date-obs'] = hel['date-obs']  #begin time of the image
        if not p_ang:
            hel['p0'] = 0
        try:
            # this works for pyfits version of CASA 4.7.0 but not CASA 4.6.0
            header.update('exptime', hel['exptime'])
            header.update('p_angle', hel['p0'])
            header.update(
                'dsun_obs',
                sun.sunearth_distance(Time(hel['date-obs'])).to(u.meter).value)
            header.update(
                'rsun_obs',
                sun.solar_semidiameter_angular_size(Time(
                    hel['date-obs'])).value)
            header.update('rsun_ref', sun.constants.radius.value)
            header.update('hgln_obs', 0.)
            header.update(
                'hglt_obs',
                sun.heliographic_solar_center(Time(hel['date-obs']))[1].value)
        except:
            # this works for astropy.io.fits
            header.append(('exptime', hel['exptime']))
            header.append(('p_angle', hel['p0']))
            header.append(
                ('dsun_obs', sun.sunearth_distance(Time(hel['date-obs'])).to(
                    u.meter).value))
            header.append(('rsun_obs',
                           sun.solar_semidiameter_angular_size(
                               Time(hel['date-obs'])).value))
            header.append(('rsun_ref', sun.constants.radius.value))
            header.append(('hgln_obs', 0.))
            header.append(('hglt_obs',
                           sun.heliographic_solar_center(Time(
                               hel['date-obs']))[1].value))

        # header.update('comment', 'Fits header updated to heliocentric coordinates by Bin Chen')

        # update intensity units, i.e. to brightness temperature?
        if toTb:
            # get restoring beam info
            (bmajs, bmins, bpas, beamunits,
             bpaunits) = getbeam(imagefile=imagefile, beamfile=beamfile)
            bmaj = bmajs[n]
            bmin = bmins[n]
            beamunit = beamunits[n]
            data = hdu[
                0].data  # remember the data order is reversed due to the FITS convension
            dim = data.ndim
            sz = data.shape
            keys = header.keys()
            values = header.values()
            # which axis is frequency?
            faxis = keys[values.index('FREQ')][-1]
            faxis_ind = dim - int(faxis)
            if header['BUNIT'].lower() == 'jy/beam':
                header['BUNIT'] = 'K'
                for i in range(sz[faxis_ind]):
                    nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * \
                                                   (i + 1 - header['CRPIX' + faxis])
                    if header['CUNIT' + faxis] == 'KHz':
                        nu *= 1e3
                    if header['CUNIT' + faxis] == 'MHz':
                        nu *= 1e6
                    if header['CUNIT' + faxis] == 'GHz':
                        nu *= 1e9
                    if len(bmaj) > 1:  # multiple (per-plane) beams
                        bmajtmp = bmaj[i]
                        bmintmp = bmin[i]
                    else:  # one single beam
                        bmajtmp = bmaj[0]
                        bmintmp = bmin[0]
                    if beamunit == 'arcsec':
                        bmaj0 = np.radians(bmajtmp / 3600.)
                        bmin0 = np.radians(bmajtmp / 3600.)
                    if beamunit == 'arcmin':
                        bmaj0 = np.radians(bmajtmp / 60.)
                        bmin0 = np.radians(bmintmp / 60.)
                    if beamunit == 'deg':
                        bmaj0 = np.radians(bmajtmp)
                        bmin0 = np.radians(bmintmp)
                    if beamunit == 'rad':
                        bmaj0 = bmajtmp
                        bmin0 = bmintmp
                    beam_area = bmaj0 * bmin0 * np.pi / (4. * log(2.))
                    k_b = qa.constants('k')['value']
                    c_l = qa.constants('c')['value']
                    factor = 2. * k_b * nu**2 / c_l**2  # SI unit
                    jy_to_si = 1e-26
                    # print nu/1e9, beam_area, factor
                    factor2 = 1.
                    if scl100:
                        factor2 = 100.
                    if faxis == '3':
                        data[:,
                             i, :, :] *= jy_to_si / beam_area / factor * factor2
                    if faxis == '4':
                        data[
                            i, :, :, :] *= jy_to_si / beam_area / factor * factor2

        hdu.flush()
        hdu.close()
Esempio n. 8
0
def imreg(vis=None,
          ephem=None,
          msinfo=None,
          imagefile=None,
          timerange=None,
          reftime=None,
          fitsfile=None,
          beamfile=None,
          offsetfile=None,
          toTb=None,
          scl100=None,
          verbose=False,
          p_ang=False,
          overwrite=True,
          usephacenter=True,
          deletehistory=False):
    ''' 
    main routine to register CASA images
           Required Inputs:
               vis: STRING. CASA measurement set from which the image is derived
               imagefile: STRING or LIST. name of the input CASA image
               timerange: STRING or LIST. timerange used to generate the CASA image, must have the same length as the input images. 
                          Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00~2012/03/03/13:00:00'
           Optional Inputs:
               msinfo: DICTIONARY. CASA MS information, output from read_msinfo. If not provided, generate one from the supplied vis
               ephem: DICTIONARY. solar ephem, output from read_horizons. 
                      If not provided, query JPL Horizons based on time info of the vis (internet connection required)
               fitsfile: STRING or LIST. name of the output registered fits files
               reftime: STRING or LIST. Each element should be in CASA standard time format, e.g., '2012/03/03/12:00:00'
               offsetfile: optionally provide an offset with a series of solar x and y offsets with timestamps 
               toTb: Bool. Convert the default Jy/beam to brightness temperature?
               scl100: Bool. If True, scale the image values up by 100 (to compensate VLA 20 dB attenuator)
               verbose: Bool. Show more diagnostic info if True.
               usephacenter: Bool -- if True, correct for the RA and DEC in the ms file based on solar empheris.
                                     Otherwise assume the phasecenter is correctly pointed to the solar disk center
                                     (EOVSA case)
    '''
    ia = iatool()

    if deletehistory:
        msclearhistory(vis)
    if verbose:
        import time
        t0 = time.time()
        prtidx = 1
        print('point {}: {}'.format(prtidx, time.time() - t0))
        prtidx += 1

    if not imagefile:
        raise ValueError, 'Please specify input image'
    if not timerange:
        raise ValueError, 'Please specify timerange of the input image'
    if type(imagefile) == str:
        imagefile = [imagefile]
    if type(timerange) == str:
        timerange = [timerange]
    if not fitsfile:
        fitsfile = [img + '.fits' for img in imagefile]
    if type(fitsfile) == str:
        fitsfile = [fitsfile]
    nimg = len(imagefile)
    if len(timerange) != nimg:
        raise ValueError, 'Number of input images does not equal to number of timeranges!'
    if len(fitsfile) != nimg:
        raise ValueError, 'Number of input images does not equal to number of output fits files!'
    nimg = len(imagefile)
    if verbose:
        print str(nimg) + ' images to process...'

    if verbose:
        print('point {}: {}'.format(prtidx, time.time() - t0))
        prtidx += 1

    if reftime:  # use as reference time to find solar disk RA and DEC to register the image, but not the actual timerange associated with the image
        if type(reftime) == str:
            reftime = [reftime] * nimg
        if len(reftime) != nimg:
            raise ValueError, 'Number of reference times does not match that of input images!'
        helio = ephem_to_helio(vis,
                               ephem=ephem,
                               msinfo=msinfo,
                               reftime=reftime,
                               usephacenter=usephacenter)
    else:
        # use the supplied timerange to register the image
        helio = ephem_to_helio(vis,
                               ephem=ephem,
                               msinfo=msinfo,
                               reftime=timerange,
                               usephacenter=usephacenter)

    if verbose:
        print('point {}: {}'.format(prtidx, time.time() - t0))
        prtidx += 1

    for n, img in enumerate(imagefile):
        if verbose:
            print 'processing image #' + str(n)
        fitsf = fitsfile[n]
        timeran = timerange[n]
        # obtain duration of the image as FITS header exptime
        try:
            [tbg0, tend0] = timeran.split('~')
            tbg_d = qa.getvalue(qa.convert(qa.totime(tbg0), 'd'))[0]
            tend_d = qa.getvalue(qa.convert(qa.totime(tend0), 'd'))[0]
            tdur_s = (tend_d - tbg_d) * 3600. * 24.
            dateobs = qa.time(qa.quantity(tbg_d, 'd'), form='fits', prec=10)[0]
        except:
            print 'Error in converting the input timerange: ' + str(
                timeran) + '. Proceeding to the next image...'
            continue

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1

        hel = helio[n]
        if not os.path.exists(img):
            raise ValueError, 'Please specify input image'
        if os.path.exists(fitsf) and not overwrite:
            raise ValueError, 'Specified fits file already exists and overwrite is set to False. Aborting...'
        else:
            p0 = hel['p0']
            ia.open(img)
            imr = ia.rotate(pa=str(-p0) + 'deg')
            imr.tofits(fitsf, history=False, overwrite=overwrite)
            imr.close()
            imsum = ia.summary()
            ia.close()

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1

        # construct the standard fits header
        # RA and DEC of the reference pixel crpix1 and crpix2
        (imra, imdec) = (imsum['refval'][0], imsum['refval'][1])
        # find out the difference of the image center to the CASA phase center
        # RA and DEC difference in arcseconds
        ddec = degrees((imdec - hel['dec_fld'])) * 3600.
        dra = degrees((imra - hel['ra_fld']) * cos(hel['dec_fld'])) * 3600.
        # Convert into image heliocentric offsets
        prad = -radians(hel['p0'])
        dx = (-dra) * cos(prad) - ddec * sin(prad)
        dy = (-dra) * sin(prad) + ddec * cos(prad)
        if offsetfile:
            try:
                offset = np.load(offsetfile)
            except:
                raise ValueError, 'The specified offsetfile does not exist!'
            reftimes_d = offset['reftimes_d']
            xoffs = offset['xoffs']
            yoffs = offset['yoffs']
            timg_d = hel['reftime']
            ind = bisect.bisect_left(reftimes_d, timg_d)
            xoff = xoffs[ind - 1]
            yoff = yoffs[ind - 1]
        else:
            xoff = hel['refx']
            yoff = hel['refy']
        if verbose:
            print 'offset of image phase center to visibility phase center (arcsec): ', dx, dy
            print 'offset of visibility phase center to solar disk center (arcsec): ', xoff, yoff
        (crval1, crval2) = (xoff + dx, yoff + dy)
        # update the fits header to heliocentric coordinates

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1

        hdu = pyfits.open(fitsf, mode='update')

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1

        header = hdu[0].header
        (cdelt1,
         cdelt2) = (-header['cdelt1'] * 3600., header['cdelt2'] * 3600.
                    )  # Original CDELT1, 2 are for RA and DEC in degrees
        header['cdelt1'] = cdelt1
        header['cdelt2'] = cdelt2
        header['cunit1'] = 'arcsec'
        header['cunit2'] = 'arcsec'
        header['crval1'] = crval1
        header['crval2'] = crval2
        header['ctype1'] = 'HPLN-TAN'
        header['ctype2'] = 'HPLT-TAN'
        header['date-obs'] = dateobs  # begin time of the image
        if not p_ang:
            hel['p0'] = 0
        try:
            # this works for pyfits version of CASA 4.7.0 but not CASA 4.6.0
            if tdur_s:
                header.set('exptime', tdur_s)
            else:
                header.set('exptime', 1.)
            header.set('p_angle', hel['p0'])
            header.set('dsun_obs',
                       sun.sunearth_distance(Time(dateobs)).to(u.meter).value)
            header.set(
                'rsun_obs',
                sun.solar_semidiameter_angular_size(Time(dateobs)).value)
            header.set('rsun_ref', sun.constants.radius.value)
            header.set('hgln_obs', 0.)
            header.set('hglt_obs',
                       sun.heliographic_solar_center(Time(dateobs))[1].value)
        except:
            # this works for astropy.io.fits
            if tdur_s:
                header.append(('exptime', tdur_s))
            else:
                header.append(('exptime', 1.))
            header.append(('p_angle', hel['p0']))
            header.append(
                ('dsun_obs',
                 sun.sunearth_distance(Time(dateobs)).to(u.meter).value))
            header.append(
                ('rsun_obs',
                 sun.solar_semidiameter_angular_size(Time(dateobs)).value))
            header.append(('rsun_ref', sun.constants.radius.value))
            header.append(('hgln_obs', 0.))
            header.append(
                ('hglt_obs',
                 sun.heliographic_solar_center(Time(dateobs))[1].value))

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1

        # update intensity units, i.e. to brightness temperature?
        if toTb:
            # get restoring beam info
            (bmajs, bmins, bpas, beamunits,
             bpaunits) = getbeam(imagefile=imagefile, beamfile=beamfile)
            bmaj = bmajs[n]
            bmin = bmins[n]
            beamunit = beamunits[n]
            data = hdu[
                0].data  # remember the data order is reversed due to the FITS convension
            dim = data.ndim
            sz = data.shape
            keys = header.keys()
            values = header.values()
            # which axis is frequency?
            faxis = keys[values.index('FREQ')][-1]
            faxis_ind = dim - int(faxis)
            if header['BUNIT'].lower() == 'jy/beam':
                header['BUNIT'] = 'K'
                header['BTYPE'] = 'Brightness Temperature'
                for i in range(sz[faxis_ind]):
                    nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * (
                        i + 1 - header['CRPIX' + faxis])
                    if header['CUNIT' + faxis] == 'KHz':
                        nu *= 1e3
                    if header['CUNIT' + faxis] == 'MHz':
                        nu *= 1e6
                    if header['CUNIT' + faxis] == 'GHz':
                        nu *= 1e9
                    if len(bmaj) > 1:  # multiple (per-plane) beams
                        bmajtmp = bmaj[i]
                        bmintmp = bmin[i]
                    else:  # one single beam
                        bmajtmp = bmaj[0]
                        bmintmp = bmin[0]
                    if beamunit == 'arcsec':
                        bmaj0 = np.radians(bmajtmp / 3600.)
                        bmin0 = np.radians(bmajtmp / 3600.)
                    if beamunit == 'arcmin':
                        bmaj0 = np.radians(bmajtmp / 60.)
                        bmin0 = np.radians(bmintmp / 60.)
                    if beamunit == 'deg':
                        bmaj0 = np.radians(bmajtmp)
                        bmin0 = np.radians(bmintmp)
                    if beamunit == 'rad':
                        bmaj0 = bmajtmp
                        bmin0 = bmintmp
                    beam_area = bmaj0 * bmin0 * np.pi / (4. * log(2.))
                    k_b = qa.constants('k')['value']
                    c_l = qa.constants('c')['value']
                    factor = 2. * k_b * nu**2 / c_l**2  # SI unit
                    jy_to_si = 1e-26
                    # print nu/1e9, beam_area, factor
                    factor2 = 1.
                    if scl100:
                        factor2 = 100.
                    if faxis == '3':
                        data[:,
                             i, :, :] *= jy_to_si / beam_area / factor * factor2
                    if faxis == '4':
                        data[
                            i, :, :, :] *= jy_to_si / beam_area / factor * factor2

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1

        hdu.flush()
        hdu.close()

        if verbose:
            print('point {}: {}'.format(prtidx, time.time() - t0))
            prtidx += 1
Esempio n. 9
0
def plt_qlook_image(imres, figdir=None, specdata=None, verbose=True, stokes='I,V', fov=None):
    from matplotlib import pyplot as plt
    from sunpy import map as smap
    from sunpy import sun
    import astropy.units as u
    if not figdir:
        figdir = './'

    observatory = 'EOVSA'
    polmap = {'RR': 0, 'LL': 1, 'I': 0, 'V': 1}
    pols = stokes.split(',')
    npols = len(pols)
    # SRL = set(['RR', 'LL'])
    # SXY = set(['XX', 'YY', 'XY', 'YX'])
    Spw = sorted(list(set(imres['Spw'])))
    nspw = len(Spw)
    # Freq = set(imres['Freq']) ## list is an unhashable type
    Freq = sorted(uniq(imres['Freq']))

    plttimes = list(set(imres['BeginTime']))
    ntime = len(plttimes)
    # sort the imres according to time
    images = np.array(imres['ImageName'])
    btimes = Time(imres['BeginTime'])
    etimes = Time(imres['EndTime'])
    spws = np.array(imres['Spw'])
    suc = np.array(imres['Succeeded'])
    inds = btimes.argsort()
    images_sort = images[inds].reshape(ntime, nspw)
    btimes_sort = btimes[inds].reshape(ntime, nspw)
    suc_sort = suc[inds].reshape(ntime, nspw)
    spws_sort = spws[inds].reshape(ntime, nspw)
    if verbose:
        print '{0:d} figures to plot'.format(ntime)
    plt.ioff()
    import matplotlib.gridspec as gridspec
    spec = specdata['spec']
    (npol, nbl, nfreq, ntim) = spec.shape
    tidx = range(ntim)
    fidx = range(nfreq)
    tim = specdata['tim']
    freq = specdata['freq']
    freqghz = freq / 1e9
    pol = ''.join(pols)
    spec_tim = Time(specdata['tim'] / 3600. / 24., format='mjd')
    timstrr = spec_tim.plot_date
    if npols == 1:
        if pol == 'RR':
            spec_plt = spec[0, 0, :, :]
        elif pol == 'LL':
            spec_plt = spec[1, 0, :, :]
        elif pol == 'I':
            spec_plt = (spec[0, 0, :, :] + spec[1, 0, :, :]) / 2.
        elif pol == 'V':
            spec_plt = (spec[0, 0, :, :] - spec[1, 0, :, :]) / 2.
        spec_plt = [spec_plt]
        print 'plot the dynamic spectrum in pol ' + pol  # ax1 = fig.add_subplot(211)

        hnspw = nspw / 2
        ncols = hnspw
        nrows = 2 + 2  # 1 image: 1x1, 1 dspec:2x4
        fig = plt.figure(figsize=(8, 8))
        gs = gridspec.GridSpec(nrows, ncols)
        axs = [plt.subplot(gs[0, 0])]
        for ll in range(1, nspw):
            axs.append(plt.subplot(gs[ll / hnspw, ll % hnspw], sharex=axs[0], sharey=axs[0]))
        for ll in range(nspw):
            axs.append(plt.subplot(gs[ll / hnspw + 2, ll % hnspw], sharex=axs[0], sharey=axs[0]))
        axs_dspec = [plt.subplot(gs[2:, :])]
        cmaps = ['jet']
    elif npols == 2:
        R_plot = np.absolute(spec[0, 0, :, :])
        L_plot = np.absolute(spec[1, 0, :, :])
        if pol == 'RRLL':
            spec_plt = [R_plot, L_plot]
            polstr = ['RR', 'LL']
            cmaps = ['jet'] * 2
        if pol == 'IV':
            I_plot = (R_plot + L_plot) / 2.
            V_plot = (R_plot - L_plot) / 2.
            spec_plt = [I_plot, V_plot]
            polstr = ['I', 'V']
            cmaps = ['jet', 'RdBu']
        print 'plot the dynamic spectrum in pol ' + pol

        hnspw = nspw / 2
        ncols = hnspw + 2  # 1 image: 1x1, 1 dspec:2x2
        nrows = 2 + 2
        fig = plt.figure(figsize=(12, 8))
        gs = gridspec.GridSpec(nrows, ncols)
        axs = [plt.subplot(gs[0, 0])]
        for ll in range(1, nspw):
            axs.append(plt.subplot(gs[ll / hnspw, ll % hnspw], sharex=axs[0], sharey=axs[0]))
        for ll in range(nspw):
            axs.append(plt.subplot(gs[ll / hnspw + 2, ll % hnspw], sharex=axs[0], sharey=axs[0]))
        axs_dspec = [plt.subplot(gs[:2, hnspw:])]
        axs_dspec.append(plt.subplot(gs[2:, hnspw:], sharex=axs_dspec[0], sharey=axs_dspec[0]))

    fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
    timetext = fig.text(0.01, 0.98, '', color='w', fontweight='bold', fontsize=12, ha='left', va='top')
    for i in range(ntime):
        plt.ioff()
        # plt.clf()
        for ax in axs:
            ax.cla()
        plttime = btimes_sort[i, 0]
        # tofd = plttime.mjd - np.fix(plttime.mjd)
        suci = suc_sort[i]
        # if tofd < 16. / 24. or sum(
        #         suci) < nspw - 2:  # if time of the day is before 16 UT (and 24 UT), skip plotting (because the old antennas are not tracking)
        #     continue
        # fig=plt.figure(figsize=(9,6))
        # fig.suptitle('EOVSA @ '+plttime.iso[:19])
        timetext.set_text(plttime.iso[:19])
        if verbose:
            print 'Plotting image at: ', plttime.iso

        if i == 0:
            dspecvspans = []
            for pol in range(npols):
                ax = axs_dspec[pol]
                ax.pcolormesh(timstrr, freqghz, spec_plt[pol], cmap=cmaps[pol])
                ax.xaxis_date()
                ax.xaxis.set_major_formatter(DateFormatter("%H:%M:%S"))
                # plt.xticks(rotation=45)
                ax.set_xlim(timstrr[tidx[0]], timstrr[tidx[-1]])
                ax.set_ylim(freqghz[fidx[0]], freqghz[fidx[-1]])
                ax.set_xlabel('Time [UT]')
                ax.set_ylabel('Frequency [GHz]')
                for idx, freq in enumerate(Freq):
                    ax.axhspan(freq[0], freq[1], linestyle='dotted', edgecolor='w', alpha=0.7, facecolor='none')
                    xtext, ytext = ax.transAxes.inverted().transform(ax.transData.transform([timstrr[tidx[0]], np.mean(freq)]))
                    ax.text(xtext + 0.01, ytext, 'spw ' + Spw[idx], color='w', transform=ax.transAxes, fontweight='bold', ha='left', va='center',
                            fontsize=8, alpha=0.5)
                ax.text(0.01, 0.98, 'Stokes ' + pols[pol], color='w', transform=ax.transAxes, fontweight='bold', ha='left', va='top')
                dspecvspans.append(ax.axvspan(btimes[i].plot_date, etimes[i].plot_date, color='w', alpha=0.4))
                ax_pos = ax.get_position().extents
                x0, y0, x1, y1 = ax_pos
                h, v = x1 - x0, y1 - y0
                x0_new = x0 + 0.15 * h
                y0_new = y0 + 0.15 * v
                x1_new = x1 - 0.05 * h
                y1_new = y1 - 0.05 * v
                ax.set_position(mpl.transforms.Bbox([[x0_new, y0_new], [x1_new, y1_new]]))
        else:
            for pol in range(npols):
                xy = dspecvspans[pol].get_xy()
                xy[:, 0][np.array([0, 1, 4])] = btimes[i].plot_date
                xy[:, 0][np.array([2, 3])] = etimes[i].plot_date
                dspecvspans[pol].set_xy(xy)

        for n in range(nspw):
            image = images_sort[i, n]
            # fig.add_subplot(nspw/3, 3, n+1)
            # fig.add_subplot(2, nspw / 2, n + 1)
            for pol in range(npols):
                if suci[n]:
                    try:
                        eomap = smap.Map(image)
                    except:
                        continue
                    sz = eomap.data.shape
                    if len(sz) == 4:
                        eomap.data = eomap.data[min(polmap[pols[pol]], eomap.meta['naxis4'] - 1), 0, :, :].reshape((sz[2], sz[3]))
                    # resample the image for plotting
                    if fov is not None:
                        fov = [np.array(ll) for ll in fov]
                        pad = max(np.diff(fov[0])[0], np.diff(fov[1])[0])
                        eomap = eomap.submap((fov[0] + np.array([-1.0, 1.0]) * pad) * u.arcsec, (fov[1] + np.array([-1.0, 1.0]) * pad) * u.arcsec)
                    else:
                        dim = u.Quantity([256, 256], u.pixel)
                        eomap = eomap.resample(dim)
                    eomap.plot_settings['cmap'] = plt.get_cmap(cmaps[pol])
                    # import pdb
                    # pdb.set_trace()
                    eomap.plot(axes=axs[n + nspw * pol])
                    eomap.draw_limb()
                    eomap.draw_grid()
                    ax = plt.gca()
                    ax.set_autoscale_on(False)
                    if fov:
                        # pass
                        ax.set_xlim(fov[0])
                        ax.set_ylim(fov[1])
                    else:
                        ax.set_xlim([-1080, 1080])
                        ax.set_ylim([-1080, 1080])
                    spwran = spws_sort[i, n]
                    # freqran = [int(s) * 0.5 + 2.9 for s in spwran.split('~')]
                    # if len(freqran) == 1:
                    #     ax.text(0.98, 0.01, '{0:.1f} GHz'.format(freqran[0]), color='w',
                    #             transform=ax.transAxes, fontweight='bold', ha='right')
                    # else:
                    #     ax.text(0.98, 0.01, '{0:.1f} - {1:.1f} GHz'.format(freqran[0], freqran[1]), color='w',
                    #             transform=ax.transAxes, fontweight='bold', ha='right')
                    ax.text(0.98, 0.01, 'Stokes {1} @ {0:.3f} GHz'.format(eomap.meta['crval3'] / 1e9, pols[pol]), color='w', transform=ax.transAxes,
                            fontweight='bold', ha='right')
                    ax.set_title(' ')
                    # ax.set_title('spw '+spws_sort[i,n])
                    # ax.text(0.01,0.02, plttime.isot,transform=ax.transAxes,color='white')
                    ax.xaxis.set_visible(False)
                    ax.yaxis.set_visible(False)
                else:
                    # make an empty map
                    data = np.zeros((512, 512))
                    header = {"DATE-OBS": plttime.isot, "EXPTIME": 0., "CDELT1": 5., "NAXIS1": 512, "CRVAL1": 0., "CRPIX1": 257, "CUNIT1": "arcsec",
                              "CTYPE1": "HPLN-TAN", "CDELT2": 5., "NAXIS2": 512, "CRVAL2": 0., "CRPIX2": 257, "CUNIT2": "arcsec",
                              "CTYPE2": "HPLT-TAN", "HGLT_OBS": sun.heliographic_solar_center(plttime)[1].value, "HGLN_OBS": 0.,
                              "RSUN_OBS": sun.solar_semidiameter_angular_size(plttime).value, "RSUN_REF": sun.constants.radius.value,
                              "DSUN_OBS": sun.sunearth_distance(plttime).to(u.meter).value, }
                    eomap = smap.Map(data, header)
                    # resample the image for plotting
                    if fov:
                        fov = [np.array(ll) for ll in fov]
                        pad = max(np.diff(fov[0])[0], np.diff(fov[1])[0])
                        try:
                            eomap = eomap.submap((fov[0] + np.array([-1.0, 1.0]) * pad) * u.arcsec, (fov[1] + np.array([-1.0, 1.0]) * pad) * u.arcsec)
                        except:
                            x0, x1 = fov[0] + np.array([-1.0, 1.0]) * pad
                            y0, y1 = fov[1] + np.array([-1.0, 1.0]) * pad
                            bl = SkyCoord(x0 * u.arcsec, y0 * u.arcsec, frame=eomap.coordinate_frame)
                            tr = SkyCoord(x1 * u.arcsec, y1 * u.arcsec, frame=eomap.coordinate_frame)
                            eomap = eomap.submap(bl, tr)
                    else:
                        dim = u.Quantity([256, 256], u.pixel)
                        eomap = eomap.resample(dim)
                    eomap.plot_settings['cmap'] = plt.get_cmap(cmaps[pol])
                    eomap.plot(axes=axs[n + nspw * pol])
                    eomap.draw_limb()
                    eomap.draw_grid()
                    ax = plt.gca()
                    ax.set_autoscale_on(False)
                    if fov:
                        # pass
                        ax.set_xlim(fov[0])
                        ax.set_ylim(fov[1])
                    else:
                        ax.set_xlim([-1080, 1080])
                        ax.set_ylim([-1080, 1080])
                    # ax.set_title('spw '+spwran+'( )'))
                    spwran = spws_sort[i, n]
                    freqran = [int(s) * 0.5 + 2.9 for s in spwran.split('~')]
                    spwran = spws_sort[i, n]
                    # ax.set_title('{0:.1f} - {1:.1f} GHz'.format(freqran[0],freqran[1]))
                    # ax.text(0.98, 0.01, '{0:.1f} - {1:.1f} GHz'.format(freqran[0], freqran[1]), color='w',
                    #         transform=ax.transAxes, fontweight='bold', ha='right')
                    ax.text(0.98, 0.01, 'Stokes {1} @ {0:.3f} GHz'.format(0., pols[pol]), color='w', transform=ax.transAxes, fontweight='bold',
                            ha='right')
                    ax.set_title(' ')

                    # ax.text(0.01,0.02, plttime.isot,transform=ax.transAxes,color='white')
                    ax.xaxis.set_visible(False)
                    ax.yaxis.set_visible(False)
        figname = observatory + '_qlimg_' + plttime.isot.replace(':', '').replace('-', '')[:19] + '.png'
        fig_tdt = plttime.to_datetime()
        # fig_subdir = fig_tdt.strftime("%Y/%m/%d/")
        figdir_ = figdir  # + fig_subdir
        if not os.path.exists(figdir_):
            os.makedirs(figdir_)
        if verbose:
            print 'Saving plot to: ' + os.path.join(figdir_, figname)
        plt.savefig(os.path.join(figdir_, figname))
    plt.close(fig)
    DButil.img2html_movie(figdir_)
Esempio n. 10
0
def plt_qlook_image(imres, figdir=None, verbose=True):
    from matplotlib import pyplot as plt
    from sunpy import map as smap
    from sunpy import sun
    import astropy.units as u
    if not figdir:
        figdir = './'
    nspw = len(set(imres['Spw']))
    plttimes = list(set(imres['BeginTime']))
    ntime = len(plttimes)
    # sort the imres according to time
    images = np.array(imres['ImageName'])
    btimes = Time(imres['BeginTime'])
    etimes = Time(imres['EndTime'])
    spws = np.array(imres['Spw'])
    suc = np.array(imres['Succeeded'])
    inds = btimes.argsort()
    images_sort = images[inds].reshape(ntime, nspw)
    btimes_sort = btimes[inds].reshape(ntime, nspw)
    suc_sort = suc[inds].reshape(ntime, nspw)
    spws_sort = spws[inds].reshape(ntime, nspw)
    if verbose:
        print '{0:d} figures to plot'.format(ntime)
    for i in range(ntime):
        #for i in range(1):
        plt.ioff()
        fig = plt.figure(figsize=(11, 6))
        plttime = btimes_sort[i, 0]
        fig.suptitle('EOVSA @ ' + plttime.iso[:19])
        if verbose:
            print 'Plotting image at: ', plttime.iso
            suci = suc_sort[i]
        for n in range(nspw):
            plt.ioff()
            image = images_sort[i, n]
            fig.add_subplot(nspw / 3, 3, n + 1)
            if suci[n]:
                try:
                    eomap = smap.Map(image)
                except:
                    continue
                sz = eomap.data.shape
                if len(sz) == 4:
                    eomap.data = eomap.data.reshape((sz[2], sz[3]))
                eomap.plot_settings['cmap'] = plt.get_cmap('jet')
                eomap.plot()
                eomap.draw_limb()
                eomap.draw_grid()
                ax = plt.gca()
                ax.set_xlim([-1050, 1050])
                ax.set_ylim([-1050, 1050])
                ax.set_title('spw ' + spws_sort[i, n])
                #ax.text(0.01,0.02, plttime.isot,transform=ax.transAxes,color='white')
                if n != nspw - 3:
                    ax.set_xlabel('')
                    ax.set_ylabel('')
                    ax.set_xticklabels([''])
                    ax.set_yticklabels([''])
            else:
                #make an empty map
                data = np.zeros((512, 512))
                header = {
                    "DATE-OBS": plttime.isot,
                    "EXPTIME": 0.,
                    "CDELT1": 5.,
                    "NAXIS1": 512,
                    "CRVAL1": 0.,
                    "CRPIX1": 257,
                    "CUNIT1": "arcsec",
                    "CTYPE1": "HPLN-TAN",
                    "CDELT2": 5.,
                    "NAXIS2": 512,
                    "CRVAL2": 0.,
                    "CRPIX2": 257,
                    "CUNIT2": "arcsec",
                    "CTYPE2": "HPLT-TAN",
                    "HGLT_OBS":
                    sun.heliographic_solar_center(plttime)[1].value,
                    "HGLN_OBS": 0.,
                    "RSUN_OBS":
                    sun.solar_semidiameter_angular_size(plttime).value,
                    "RSUN_REF": sun.constants.radius.value,
                    "DSUN_OBS":
                    sun.sunearth_distance(plttime).to(u.meter).value,
                }
                eomap = smap.Map(data, header)
                eomap.plot_settings['cmap'] = plt.get_cmap('jet')
                eomap.plot()
                eomap.draw_limb()
                eomap.draw_grid()
                ax = plt.gca()
                ax.set_xlim([-1050, 1050])
                ax.set_ylim([-1050, 1050])
                ax.set_title('spw ' + spws_sort[i, n])
                #ax.text(0.01,0.02, plttime.isot,transform=ax.transAxes,color='white')
                if n != 6:
                    ax.set_xlabel('')
                    ax.set_ylabel('')
                    ax.set_xticklabels([''])
                    ax.set_yticklabels([''])
        figname = 'eovsa_qlimg_' + plttime.isot.replace(':', '').replace(
            '-', '')[:15] + '.png'
        fig_tdt = plttime.to_datetime()
        fig_subdir = fig_tdt.strftime("%Y/%m/%d/")
        figdir_ = figdir + fig_subdir
        if not os.path.exists(figdir_):
            os.makedirs(figdir_)
        if verbose:
            print 'Saving plot to :' + figdir_ + figname
        plt.savefig(figdir_ + figname)
        plt.close(fig)