def _parse_level_0cs(fp): """Parses and EVE Level 0CS file""" is_missing_data = False #boolean to check for missing data missing_data_val = numpy.nan header = [] fields = [] line = fp.readline() # Read header at top of file while line.startswith(";"): header.append(line) if '; Missing data:' in line : is_missing_data = True missing_data_val = line.split(':')[1].strip() line = fp.readline() meta = OrderedDict() for hline in header : if hline == '; Format:\n' or hline == '; Column descriptions:\n': continue elif ('Created' in hline) or ('Source' in hline): meta[hline.split(':',1)[0].replace(';',' ').strip()] = hline.split(':',1)[1].strip() elif ':' in hline : meta[hline.split(':')[0].replace(';',' ').strip()] = hline.split(':')[1].strip() fieldnames_start = False for hline in header: if hline.startswith("; Format:"): fieldnames_start = False if fieldnames_start: fields.append(hline.split(":")[0].replace(';', ' ').strip()) if hline.startswith("; Column descriptions:"): fieldnames_start = True # Next line is YYYY DOY MM DD date_parts = line.split(" ") year = int(date_parts[0]) month = int(date_parts[2]) day = int(date_parts[3]) #last_pos = fp.tell() #line = fp.readline() #el = line.split() #len # function to parse date column (HHMM) parser = lambda x: datetime(year, month, day, int(x[0:2]), int(x[2:4])) data = read_csv(fp, sep="\s*", names=fields, index_col=0, date_parser=parser, header = None) if is_missing_data : #If missing data specified in header data[data == float(missing_data_val)] = numpy.nan #data.columns = fields return meta, data
def _parse_fits(filepath): """Loads LYRA data from a FITS file""" # Open file with PyFITS hdulist = fits.open(filepath) fits_record = hdulist[1].data #secondary_header = hdulist[1].header # Start and end dates. Different LYRA FITS files have # different tags for the date obs. if 'date-obs' in hdulist[0].header: start_str = hdulist[0].header['date-obs'] elif 'date_obs' in hdulist[0].header: start_str = hdulist[0].header['date_obs'] #end_str = hdulist[0].header['date-end'] #start = datetime.datetime.strptime(start_str, '%Y-%m-%dT%H:%M:%S.%f') start = parse_time(start_str) #end = datetime.datetime.strptime(end_str, '%Y-%m-%dT%H:%M:%S.%f') # First column are times. For level 2 data, the units are [s]. # For level 3 data, the units are [min] if hdulist[1].header['TUNIT1'] == 's': times = [ start + datetime.timedelta(seconds=int(n)) for n in fits_record.field(0) ] elif hdulist[1].header['TUNIT1'] == 'MIN': times = [ start + datetime.timedelta(minutes=int(n)) for n in fits_record.field(0) ] else: raise ValueError("Time unit in LYRA fits file not recognised. " "Value = {0}".format(hdulist[1].header['TUNIT1'])) # Rest of columns are the data table = {} for i, col in enumerate(fits_record.columns[1:-1]): #temporary patch for big-endian data bug on pandas 0.13 if fits_record.field( i + 1).dtype.byteorder == '>' and sys.byteorder == 'little': table[col.name] = fits_record.field( i + 1).byteswap().newbyteorder() else: table[col.name] = fits_record.field(i + 1) # Return the header and the data return OrderedDict(hdulist[0].header), pandas.DataFrame(table, index=times)
def _parse_fits(filepath): """This method parses NoRH tca and tcz correlation files.""" hdulist=fits.open(filepath) header=OrderedDict(hdulist[0].header) #for these NoRH files, the time series data is recorded in the primary HDU data=hdulist[0].data #No explicit time array in FITS file, so construct the time array from the FITS header obs_start_time=parse_time(header['DATE-OBS'] + 'T' + header['CRVAL1']) length=len(data) cadence=np.float(header['CDELT1']) sec_array=np.linspace(0, length-1, (length/cadence)) norh_time=[] for s in sec_array: norh_time.append(obs_start_time + datetime.timedelta(0,s)) return header, pandas.DataFrame(data, index=norh_time)
def _parse_fits(filepath): """Loads LYRA data from a FITS file""" # Open file with PyFITS hdulist = fits.open(filepath) fits_record = hdulist[1].data #secondary_header = hdulist[1].header # Start and end dates. Different LYRA FITS files have # different tags for the date obs. if 'date-obs' in hdulist[0].header: start_str = hdulist[0].header['date-obs'] elif 'date_obs' in hdulist[0].header: start_str = hdulist[0].header['date_obs'] #end_str = hdulist[0].header['date-end'] #start = datetime.datetime.strptime(start_str, '%Y-%m-%dT%H:%M:%S.%f') start = parse_time(start_str) #end = datetime.datetime.strptime(end_str, '%Y-%m-%dT%H:%M:%S.%f') # First column are times times = [ start + datetime.timedelta(0, n) for n in fits_record.field(0) ] # Rest of columns are the data table = {} for i, col in enumerate(fits_record.columns[1:-1]): #temporary patch for big-endian data bug on pandas 0.13 if fits_record.field( i + 1).dtype.byteorder == '>' and sys.byteorder == 'little': table[col.name] = fits_record.field( i + 1).byteswap().newbyteorder() else: table[col.name] = fits_record.field(i + 1) # Return the header and the data return OrderedDict(hdulist[0].header), pandas.DataFrame(table, index=times)
def update(self, d2): """Overide .update() to perform case-insensitively""" return OrderedDict.update(self, dict((k.lower(), v) for k, v in d2.items()))
def get(self, key, default=None): """Overide .get() indexing""" return OrderedDict.get(self, key.lower(), default)
def __setitem__(self, key, value): """Overide [] indexing""" return OrderedDict.__setitem__(self, key.lower(), value)
def __getitem__(self, key): """Overide [] indexing""" return OrderedDict.__getitem__(self, key.lower())
def __init__(self, maxsize=float('inf')): self.maxsize = maxsize self._dict = OrderedDict()
class BaseCache(object): """ BaseCache is a class that saves and operates on an OrderedDict. It has a certain capacity, stored in the attribute `maxsize`. Whether this capacity is reached, can be checked by using the boolean property `is_full`. To implement a custom cache, inherit from this class and override the methods ``__getitem__`` and ``__setitem__``. Call the method `sunpy.database.caching.BaseCache.callback` as soon as an item from the cache is removed. """ __metaclass__ = ABCMeta def __init__(self, maxsize=float('inf')): self.maxsize = maxsize self._dict = OrderedDict() def get(self, key, default=None): # pragma: no cover """Return the corresponding value to `key` if `key` is in the cache, `default` otherwise. This method has no side-effects, multiple calls with the same cache and the same passed key must always return the same value. """ try: return self._dict[key] except KeyError: return default @abstractmethod def __getitem__(self, key): """abstract method: this method must be overwritten by inheriting subclasses. It defines what happens if an item from the cache is attempted to be accessed. """ return # pragma: no cover @abstractmethod def __setitem__(self, key, value): """abstract method: this method must be overwritten by inheriting subclasses. It defines what happens if a new value should be assigned to the given key. If the given key does already exist in the cache or not must be checked by the person who implements this method. """ @abstractproperty def to_be_removed(self): """The item that will be removed on the next :meth:`sunpy.database.caching.BaseCache.remove` call. """ @abstractmethod def remove(self): """Call this method to manually remove one item from the cache. Which item is removed, depends on the implementation of the cache. After the item has been removed, the callback method is called. """ def callback(self, key, value): """This method should be called (by convention) if an item is removed from the cache because it is full. The passed key and value are the ones that are removed. By default this method does nothing, but it can be customized in a custom cache that inherits from this base class. """ @property def is_full(self): """True if the number of items in the cache equals :attr:`maxsize`, False otherwise. """ return len(self._dict) == self.maxsize def __delitem__(self, key): self._dict.__delitem__(key) def __contains__(self, key): return key in self._dict.keys() def __len__(self): return len(self._dict) def __iter__(self): for key in self._dict.__iter__(): yield key def __reversed__(self): # pragma: no cover for key in self._dict.__reversed__(): yield key def clear(self): # pragma: no cover return self._dict.clear() def keys(self): # pragma: no cover return self._dict.keys() def values(self): # pragma: no cover return self._dict.values() def items(self): # pragma: no cover return self._dict.items() def iterkeys(self): # pragma: no cover return self._dict.iterkeys() def itervalues(self): # pragma: no cover for value in self._dict.itervalues(): yield value def iteritems(self): # pragma: no cover for key, value in self._dict.iteritems(): yield key, value def update(self, *args, **kwds): # pragma: no cover self._dict.update(*args, **kwds) def pop(self, key, default=MutableMapping._MutableMapping__marker ): # pragma: no cover return self._dict.pop(key, default) def setdefault(self, key, default=None): # pragma: no cover return self._dict.setdefault(key, default) def popitem(self, last=True): # pragma: no cover return self._dict.popitem(last) def __reduce__(self): # pragma: no cover return self._dict.__reduce__() def copy(self): # pragma: no cover return self._dict.copy() def __eq__(self, other): # pragma: no cover return self._dict.__eq__(other) def __ne__(self, other): # pragma: no cover return self._dict.__ne__(other) def viewkeys(self): # pragma: no cover return self._dict.viewkeys() def viewvalues(self): # pragma: no cover return self._dict.viewvalues() def viewitems(self): # pragma: no cover return self._dict.viewitems() @classmethod def fromkeys(cls, iterable, value=None): # pragma: no cover return OrderedDict.fromkeys(iterable, value) def __repr__(self): # pragma: no cover return '{0}({1!r})'.format(self.__class__.__name__, dict(self._dict))
def fromkeys(cls, iterable, value=None): # pragma: no cover return OrderedDict.fromkeys(iterable, value)
def __init__(self, data, meta=None): self.data = pandas.DataFrame(data) if meta == '' or meta is None: self.meta = OrderedDict() else: self.meta = OrderedDict(meta)
def setdefault(self, key, default=None): """Overide .setdefault() to perform case-insensitively""" return OrderedDict.setdefault(self, key.lower(), default)
class LightCurve(object): """ LightCurve(filepath) A generic light curve object. Parameters ---------- args : filepath, url, or start and end dates The input for a LightCurve object should either be a filepath, a URL, or a date range to be queried for the particular instrument. Attributes ---------- meta : string, dict The comment string or header associated with the light curve input data : pandas.DataFrame An pandas DataFrame prepresenting one or more fields as they vary with respect to time. Examples -------- >>> import sunpy >>> import datetime >>> import numpy as np >>> base = datetime.datetime.today() >>> dates = [base - datetime.timedelta(minutes=x) for x in range(0, 24 * 60)] >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / 24 * 60)) >>> light_curve = sunpy.lightcurve.LightCurve.create( ... {"param1": intensity}, index=dates ... ) >>> light_curve.peek() References ---------- | http://pandas.pydata.org/pandas-docs/dev/dsintro.html """ _cond_dispatch = ConditionalDispatch() create = classmethod(_cond_dispatch.wrapper()) def __init__(self, data, meta=None): self.data = pandas.DataFrame(data) if meta == '' or meta is None: self.meta = OrderedDict() else: self.meta = OrderedDict(meta) @property def header(self): """ Return the lightcurves metadata .. deprecated:: 0.4.0 Use .meta instead """ warnings.warn( """lightcurve.header has been renamed to lightcurve.meta for compatability with map, please use meta instead""", Warning) return self.meta @classmethod def from_time(cls, time, **kwargs): '''Called by Conditional Dispatch object when valid time is passed as input to create method.''' date = parse_time(time) url = cls._get_url_for_date(date, **kwargs) filepath = cls._download( url, kwargs, err="Unable to download data for specified date") return cls.from_file(filepath) @classmethod def from_range(cls, start, end, **kwargs): '''Called by Conditional Dispatch object when start and end time are passed as input to create method.''' url = cls._get_url_for_date_range(parse_time(start), parse_time(end)) filepath = cls._download( url, kwargs, err="Unable to download data for specified date range") result = cls.from_file(filepath) result.data = result.data.truncate(start, end) return result @classmethod def from_timerange(cls, timerange, **kwargs): '''Called by Conditional Dispatch object when time range is passed as input to create method.''' url = cls._get_url_for_date_range(timerange) filepath = cls._download( url, kwargs, err="Unable to download data for specified date range") result = cls.from_file(filepath) result.data = result.data.truncate(timerange.start(), timerange.end()) return result @classmethod def from_file(cls, filename): '''Used to return Light Curve object by reading the given filename Parameters: filename: Path of the file to be read. ''' filename = os.path.expanduser(filename) meta, data = cls._parse_filepath(filename) if data.empty: raise ValueError("No data found!") else: return cls(data, meta) @classmethod def from_url(cls, url, **kwargs): ''' Downloads a file from the given url, reads and returns a Light Curve object. Parameters: url : string Uniform Resource Locator pointing to the file. kwargs :Dict Dict object containing other related parameters to assist in download. ''' try: filepath = cls._download(url, kwargs) except (urllib2.HTTPError, urllib2.URLError, ValueError): err = ("Unable to read location %s.") % url raise ValueError(err) return cls.from_file(filepath) @classmethod def from_data(cls, data, index=None, meta=None): ''' Called by Conditional Dispatch object to create Light Curve object when corresponding data is passed to create method. ''' return cls(pandas.DataFrame(data, index=index), meta) @classmethod def from_yesterday(cls): return cls.from_url(cls._get_default_uri()) @classmethod def from_dataframe(cls, dataframe, meta=None): ''' Called by Conditional Dispatch object to create Light Curve object when Pandas DataFrame is passed to create method. ''' return cls(dataframe, meta) def plot(self, axes=None, **plot_args): """Plot a plot of the light curve Parameters ---------- axes: matplotlib.axes object or None If provided the image will be plotted on the given axes. Else the current matplotlib axes will be used. **plot_args : dict Any additional plot arguments that should be used when plotting the image. """ #Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the light curve in a new figure""" figure = plt.figure() self.plot(**kwargs) figure.show() return figure @staticmethod def _download(uri, kwargs, err='Unable to download data at specified URL'): """Attempts to download data at the specified URI""" _filename = os.path.basename(uri).split("?")[0] # user specifies a download directory if "directory" in kwargs: download_dir = os.path.expanduser(kwargs["directory"]) else: download_dir = sunpy.config.get("downloads", "download_dir") # overwrite the existing file if the keyword is present if "overwrite" in kwargs: overwrite = kwargs["overwrite"] else: overwrite = False # If the file is not already there, download it filepath = os.path.join(download_dir, _filename) if not (os.path.isfile(filepath)) or (overwrite and os.path.isfile(filepath)): try: response = urllib2.urlopen(uri) except (urllib2.HTTPError, urllib2.URLError): raise urllib2.URLError(err) with open(filepath, 'wb') as fp: shutil.copyfileobj(response, fp) else: warnings.warn( "Using existing file rather than downloading, use overwrite=True to override.", RuntimeWarning) return filepath @classmethod def _get_default_uri(cls): """Default data to load when none is specified""" msg = "No default action set for %s" raise NotImplementedError(msg % cls.__name__) @classmethod def _get_url_for_date(cls, date, **kwargs): """Returns a URL to the data for the specified date""" msg = "Date-based downloads not supported for for %s" raise NotImplementedError(msg % cls.__name__) @classmethod def _get_url_for_date_range(cls, *args, **kwargs): """Returns a URL to the data for the specified date range""" msg = "Date-range based downloads not supported for for %s" raise NotImplementedError(msg % cls.__name__) @staticmethod def _parse_csv(filepath): """Place holder method to parse CSV files.""" msg = "Generic CSV parsing not yet implemented for LightCurve" raise NotImplementedError(msg) @staticmethod def _parse_fits(filepath): """Place holder method to parse FITS files.""" msg = "Generic FITS parsing not yet implemented for LightCurve" raise NotImplementedError(msg) @classmethod def _parse_filepath(cls, filepath): """Check the file extension to see how to parse the file""" filename, extension = os.path.splitext(filepath) if extension.lower() in (".csv", ".txt"): return cls._parse_csv(filepath) else: return cls._parse_fits(filepath) def truncate(self, a, b=None): """Returns a truncated version of the timeseries object""" if isinstance(a, TimeRange): time_range = a else: time_range = TimeRange(a, b) truncated = self.data.truncate(time_range.start(), time_range.end()) return self.__class__.create(truncated, self.meta.copy()) def extract(self, a): """Extract a set of particular columns from the DataFrame""" # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return LightCurve(self.data[a], self.meta.copy()) def time_range(self): """Returns the start and end times of the LightCurve as a TimeRange object""" return TimeRange(self.data.index[0], self.data.index[-1])
class LightCurve(object): """ LightCurve(filepath) A generic light curve object. Parameters ---------- args : filepath, url, or start and end dates The input for a LightCurve object should either be a filepath, a URL, or a date range to be queried for the particular instrument. Attributes ---------- meta : string, dict The comment string or header associated with the light curve input data : pandas.DataFrame An pandas DataFrame prepresenting one or more fields as they vary with respect to time. Examples -------- >>> import sunpy >>> import datetime >>> import numpy as np >>> base = datetime.datetime.today() >>> dates = [base - datetime.timedelta(minutes=x) for x in range(0, 24 * 60)] >>> intensity = np.sin(np.arange(0, 12 * np.pi, step=(12 * np.pi) / 24 * 60)) >>> light_curve = sunpy.lightcurve.LightCurve.create( ... {"param1": intensity}, index=dates ... ) >>> light_curve.peek() References ---------- | http://pandas.pydata.org/pandas-docs/dev/dsintro.html """ _cond_dispatch = ConditionalDispatch() create = classmethod(_cond_dispatch.wrapper()) def __init__(self, data, meta=None): self.data = pandas.DataFrame(data) if meta == "" or meta is None: self.meta = OrderedDict() else: self.meta = OrderedDict(meta) @property def header(self): """ Return the lightcurves metadata .. deprecated:: 0.4.0 Use .meta instead """ warnings.warn( """lightcurve.header has been renamed to lightcurve.meta for compatability with map, please use meta instead""", Warning, ) return self.meta @classmethod def from_time(cls, time, **kwargs): """Called by Conditional Dispatch object when valid time is passed as input to create method.""" date = parse_time(time) url = cls._get_url_for_date(date, **kwargs) filepath = cls._download(url, kwargs, err="Unable to download data for specified date") return cls.from_file(filepath) @classmethod def from_range(cls, start, end, **kwargs): """Called by Conditional Dispatch object when start and end time are passed as input to create method.""" url = cls._get_url_for_date_range(parse_time(start), parse_time(end), **kwargs) filepath = cls._download(url, kwargs, err="Unable to download data for specified date range") result = cls.from_file(filepath) result.data = result.data.truncate(start, end) return result @classmethod def from_timerange(cls, timerange, **kwargs): """Called by Conditional Dispatch object when time range is passed as input to create method.""" url = cls._get_url_for_date_range(timerange, **kwargs) filepath = cls._download(url, kwargs, err="Unable to download data for specified date range") result = cls.from_file(filepath) result.data = result.data.truncate(timerange.start(), timerange.end()) return result @classmethod def from_file(cls, filename): """Used to return Light Curve object by reading the given filename Parameters: filename: Path of the file to be read. """ filename = os.path.expanduser(filename) meta, data = cls._parse_filepath(filename) if data.empty: raise ValueError("No data found!") else: return cls(data, meta) @classmethod def from_url(cls, url, **kwargs): """ Downloads a file from the given url, reads and returns a Light Curve object. Parameters: url : string Uniform Resource Locator pointing to the file. kwargs :Dict Dict object containing other related parameters to assist in download. """ try: filepath = cls._download(url, kwargs) except (urllib2.HTTPError, urllib2.URLError, ValueError): err = ("Unable to read location %s.") % url raise ValueError(err) return cls.from_file(filepath) @classmethod def from_data(cls, data, index=None, meta=None): """ Called by Conditional Dispatch object to create Light Curve object when corresponding data is passed to create method. """ return cls(pandas.DataFrame(data, index=index), meta) @classmethod def from_yesterday(cls): return cls.from_url(cls._get_default_uri()) @classmethod def from_dataframe(cls, dataframe, meta=None): """ Called by Conditional Dispatch object to create Light Curve object when Pandas DataFrame is passed to create method. """ return cls(dataframe, meta) def plot(self, axes=None, **plot_args): """Plot a plot of the light curve Parameters ---------- axes: matplotlib.axes object or None If provided the image will be plotted on the given axes. Else the current matplotlib axes will be used. **plot_args : dict Any additional plot arguments that should be used when plotting the image. """ # Get current axes if axes is None: axes = plt.gca() axes = self.data.plot(ax=axes, **plot_args) return axes def peek(self, **kwargs): """Displays the light curve in a new figure""" figure = plt.figure() self.plot(**kwargs) figure.show() return figure @staticmethod def _download(uri, kwargs, err="Unable to download data at specified URL"): """Attempts to download data at the specified URI""" _filename = os.path.basename(uri).split("?")[0] # user specifies a download directory if "directory" in kwargs: download_dir = os.path.expanduser(kwargs["directory"]) else: download_dir = config.get("downloads", "download_dir") # overwrite the existing file if the keyword is present if "overwrite" in kwargs: overwrite = kwargs["overwrite"] else: overwrite = False # If the file is not already there, download it filepath = os.path.join(download_dir, _filename) if not (os.path.isfile(filepath)) or (overwrite and os.path.isfile(filepath)): try: response = urllib2.urlopen(uri) except (urllib2.HTTPError, urllib2.URLError): raise urllib2.URLError(err) with open(filepath, "wb") as fp: shutil.copyfileobj(response, fp) else: warnings.warn( "Using existing file rather than downloading, use overwrite=True to override.", RuntimeWarning ) return filepath @classmethod def _get_default_uri(cls): """Default data to load when none is specified""" msg = "No default action set for %s" raise NotImplementedError(msg % cls.__name__) @classmethod def _get_url_for_date(cls, date, **kwargs): """Returns a URL to the data for the specified date""" msg = "Date-based downloads not supported for for %s" raise NotImplementedError(msg % cls.__name__) @classmethod def _get_url_for_date_range(cls, *args, **kwargs): """Returns a URL to the data for the specified date range""" msg = "Date-range based downloads not supported for for %s" raise NotImplementedError(msg % cls.__name__) @staticmethod def _parse_csv(filepath): """Place holder method to parse CSV files.""" msg = "Generic CSV parsing not yet implemented for LightCurve" raise NotImplementedError(msg) @staticmethod def _parse_fits(filepath): """Place holder method to parse FITS files.""" msg = "Generic FITS parsing not yet implemented for LightCurve" raise NotImplementedError(msg) @classmethod def _parse_filepath(cls, filepath): """Check the file extension to see how to parse the file""" filename, extension = os.path.splitext(filepath) if extension.lower() in (".csv", ".txt"): return cls._parse_csv(filepath) else: return cls._parse_fits(filepath) def truncate(self, a, b=None): """Returns a truncated version of the timeseries object""" if isinstance(a, TimeRange): time_range = a else: time_range = TimeRange(a, b) truncated = self.data.truncate(time_range.start(), time_range.end()) return self.__class__.create(truncated, self.meta.copy()) def extract(self, a): """Extract a set of particular columns from the DataFrame""" # TODO allow the extract function to pick more than one column if isinstance(self, pandas.Series): return self else: return LightCurve(self.data[a], self.meta.copy()) def time_range(self): """Returns the start and end times of the LightCurve as a TimeRange object""" return TimeRange(self.data.index[0], self.data.index[-1])
class BaseCache(object): """ BaseCache is a class that saves and operates on an OrderedDict. It has a certain capacity, stored in the attribute `maxsize`. Whether this capacity is reached, can be checked by using the boolean property `is_full`. To implement a custom cache, inherit from this class and override the methods ``__getitem__`` and ``__setitem__``. Call the method `sunpy.database.caching.BaseCache.callback` as soon as an item from the cache is removed. """ __metaclass__ = ABCMeta def __init__(self, maxsize=float('inf')): self.maxsize = maxsize self._dict = OrderedDict() def get(self, key, default=None): # pragma: no cover """Return the corresponding value to `key` if `key` is in the cache, `default` otherwise. This method has no side-effects, multiple calls with the same cache and the same passed key must always return the same value. """ try: return self._dict[key] except KeyError: return default @abstractmethod def __getitem__(self, key): """abstract method: this method must be overwritten by inheriting subclasses. It defines what happens if an item from the cache is attempted to be accessed. """ return # pragma: no cover @abstractmethod def __setitem__(self, key, value): """abstract method: this method must be overwritten by inheriting subclasses. It defines what happens if a new value should be assigned to the given key. If the given key does already exist in the cache or not must be checked by the person who implements this method. """ @abstractproperty def to_be_removed(self): """The item that will be removed on the next :meth:`sunpy.database.caching.BaseCache.remove` call. """ @abstractmethod def remove(self): """Call this method to manually remove one item from the cache. Which item is removed, depends on the implementation of the cache. After the item has been removed, the callback method is called. """ def callback(self, key, value): """This method should be called (by convention) if an item is removed from the cache because it is full. The passed key and value are the ones that are removed. By default this method does nothing, but it can be customized in a custom cache that inherits from this base class. """ @property def is_full(self): """True if the number of items in the cache equals :attr:`maxsize`, False otherwise. """ return len(self._dict) == self.maxsize def __delitem__(self, key): self._dict.__delitem__(key) def __contains__(self, key): return key in self._dict.keys() def __len__(self): return len(self._dict) def __iter__(self): for key in self._dict.__iter__(): yield key def __reversed__(self): # pragma: no cover for key in self._dict.__reversed__(): yield key def clear(self): # pragma: no cover return self._dict.clear() def keys(self): # pragma: no cover return self._dict.keys() def values(self): # pragma: no cover return self._dict.values() def items(self): # pragma: no cover return self._dict.items() def iterkeys(self): # pragma: no cover return self._dict.iterkeys() def itervalues(self): # pragma: no cover for value in self._dict.itervalues(): yield value def iteritems(self): # pragma: no cover for key, value in self._dict.iteritems(): yield key, value def update(self, *args, **kwds): # pragma: no cover self._dict.update(*args, **kwds) def pop(self, key, default=MutableMapping._MutableMapping__marker): # pragma: no cover return self._dict.pop(key, default) def setdefault(self, key, default=None): # pragma: no cover return self._dict.setdefault(key, default) def popitem(self, last=True): # pragma: no cover return self._dict.popitem(last) def __reduce__(self): # pragma: no cover return self._dict.__reduce__() def copy(self): # pragma: no cover return self._dict.copy() def __eq__(self, other): # pragma: no cover return self._dict.__eq__(other) def __ne__(self, other): # pragma: no cover return self._dict.__ne__(other) def viewkeys(self): # pragma: no cover return self._dict.viewkeys() def viewvalues(self): # pragma: no cover return self._dict.viewvalues() def viewitems(self): # pragma: no cover return self._dict.viewitems() @classmethod def fromkeys(cls, iterable, value=None): # pragma: no cover return OrderedDict.fromkeys(iterable, value) def __repr__(self): # pragma: no cover return '{0}({1!r})'.format(self.__class__.__name__, dict(self._dict))
def __init__(self, data, meta=None): self.data = pandas.DataFrame(data) if meta == "" or meta is None: self.meta = OrderedDict() else: self.meta = OrderedDict(meta)
def __contains__(self, key): """Overide __contains__""" return OrderedDict.__contains__(self, key.lower())
def __init__(self, *args, **kwargs): OrderedDict.__init__(self, *args, **kwargs)