def layer_forward(self, x, hx, cell, batch_sizes, reverse=False):
        hx_0 = hx_i = hx
        hx_n, output = [], []
        steps = reversed(range(len(x))) if reverse else range(len(x))
        if self.training:
            hid_mask = SharedDropout.get_mask(hx_0[0], self.dropout)

        for t in steps:
            last_batch_size, batch_size = len(hx_i[0]), batch_sizes[t]
            if last_batch_size < batch_size:
                hx_i = [
                    torch.cat((h, ih[last_batch_size:batch_size]))
                    for h, ih in zip(hx_i, hx_0)
                ]
            else:
                hx_n.append([h[batch_size:] for h in hx_i])
                hx_i = [h[:batch_size] for h in hx_i]
            hx_i = [h for h in cell(x[t], hx_i)]
            output.append(hx_i[0])
            if self.training:
                hx_i[0] = hx_i[0] * hid_mask[:batch_size]
        if reverse:
            hx_n = hx_i
            output.reverse()
        else:
            hx_n.append(hx_i)
            hx_n = [torch.cat(h) for h in zip(*reversed(hx_n))]
        output = torch.cat(output)

        return output, hx_n
Esempio n. 2
0
    def forward(self, sequence, hx=None):
        r"""
        Args:
            sequence (~torch.nn.utils.rnn.PackedSequence):
                A packed variable length sequence.
            hx (~torch.Tensor, ~torch.Tensor):
                A tuple composed of two tensors `h` and `c`.
                `h` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the initial hidden state
                for each element in the batch.
                `c` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the initial cell state
                for each element in the batch.
                If `hx` is not provided, both `h` and `c` default to zero.
                Default: ``None``.

        Returns:
            ~torch.nn.utils.rnn.PackedSequence, (~torch.Tensor, ~torch.Tensor):
                The first is a packed variable length sequence.
                The second is a tuple of tensors `h` and `c`.
                `h` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the hidden state for `t = seq_len`.
                Like output, the layers can be separated using ``h.view(num_layers, 2, batch_size, hidden_size)``
                and similarly for c.
                `c` of shape ``[num_layers*2, batch_size, hidden_size]`` contains the cell state for `t = seq_len`.
        """
        x, batch_sizes = sequence.data, sequence.batch_sizes.tolist()
        batch_size = batch_sizes[0]
        h_n, c_n = [], []

        if hx is None:
            ih = x.new_zeros(self.num_layers * 2, batch_size, self.hidden_size)
            h, c = ih, ih
        else:
            h, c = self.permute_hidden(hx, sequence.sorted_indices)
        h = h.view(self.num_layers, 2, batch_size, self.hidden_size)
        c = c.view(self.num_layers, 2, batch_size, self.hidden_size)

        for i in range(self.num_layers):
            x = torch.split(x, batch_sizes)
            if self.training:
                mask = SharedDropout.get_mask(x[0], self.dropout)
                x = [i * mask[:len(i)] for i in x]
            x_f, (h_f, c_f) = self.layer_forward(x=x,
                                                 hx=(h[i, 0], c[i, 0]),
                                                 cell=self.f_cells[i],
                                                 batch_sizes=batch_sizes)
            x_b, (h_b, c_b) = self.layer_forward(x=x,
                                                 hx=(h[i, 1], c[i, 1]),
                                                 cell=self.b_cells[i],
                                                 batch_sizes=batch_sizes,
                                                 reverse=True)
            x = torch.cat((x_f, x_b), -1)
            h_n.append(torch.stack((h_f, h_b)))
            c_n.append(torch.stack((c_f, c_b)))
        x = PackedSequence(x, sequence.batch_sizes, sequence.sorted_indices,
                           sequence.unsorted_indices)
        hx = torch.cat(h_n, 0), torch.cat(c_n, 0)
        hx = self.permute_hidden(hx, sequence.unsorted_indices)

        return x, hx
    def forward(self, sequence, hx=None):
        """
        Args:
            sequence (PackedSequence):
                A packed variable length sequence.
            hx (tuple[torch.Tensor, torch.Tensor]):
                h (``[num_layers * 2, batch_size, hidden_size]``) contains the initial hidden state
                for each element in the batch.
                c (``[num_layers * 2, batch_size, hidden_size]``) contains the initial cell state
                for each element in the batch.
                If (h, x) is not provided, both h and c default to zero.
                Default: None.

        Returns:
            x (PackedSequence):
                A packed variable length sequence.
            hx (tuple[torch.Tensor, torch.Tensor]):
                h (``[num_layers * 2, batch_size, hidden_size]``) contains the hidden state for ``t = seq_len``.
                Like output, the layers can be separated using ``h.view(num_layers, 2, batch_size, hidden_size)``
                and similarly for c.
                c (``[num_layers * 2, batch_size, hidden_size]``) contains the cell state for ``t = seq_len``.
        """
        x, batch_sizes = sequence.data, sequence.batch_sizes.tolist()
        batch_size = batch_sizes[0]
        h_n, c_n = [], []

        if hx is None:
            ih = x.new_zeros(self.num_layers * 2, batch_size, self.hidden_size)
            h, c = ih, ih
        else:
            h, c = self.permute_hidden(hx, sequence.sorted_indices)
        h = h.view(self.num_layers, 2, batch_size, self.hidden_size)
        c = c.view(self.num_layers, 2, batch_size, self.hidden_size)

        for i in range(self.num_layers):
            x = torch.split(x, batch_sizes)
            if self.training:
                mask = SharedDropout.get_mask(x[0], self.dropout)
                x = [i * mask[:len(i)] for i in x]
            x_f, (h_f, c_f) = self.layer_forward(x=x,
                                                 hx=(h[i, 0], c[i, 0]),
                                                 cell=self.f_cells[i],
                                                 batch_sizes=batch_sizes)
            x_b, (h_b, c_b) = self.layer_forward(x=x,
                                                 hx=(h[i, 1], c[i, 1]),
                                                 cell=self.b_cells[i],
                                                 batch_sizes=batch_sizes,
                                                 reverse=True)
            x = torch.cat((x_f, x_b), -1)
            h_n.append(torch.stack((h_f, h_b)))
            c_n.append(torch.stack((c_f, c_b)))
        x = PackedSequence(x, sequence.batch_sizes, sequence.sorted_indices,
                           sequence.unsorted_indices)
        hx = torch.cat(h_n, 0), torch.cat(c_n, 0)
        hx = self.permute_hidden(hx, sequence.unsorted_indices)

        return x, hx
Esempio n. 4
0
    def __init__(self, n_in, n_out, dropout=0):
        super().__init__()

        self.n_in = n_in
        self.n_out = n_out
        self.linear = nn.Linear(n_in, n_out)
        self.activation = nn.LeakyReLU(negative_slope=0.1)
        self.dropout = SharedDropout(p=dropout)

        self.reset_parameters()
Esempio n. 5
0
    def __init__(self,
                 n_words,
                 n_feats,
                 n_labels,
                 feat='char',
                 n_embed=100,
                 n_feat_embed=100,
                 n_char_embed=50,
                 bert=None,
                 n_bert_layers=4,
                 max_len=None,
                 mix_dropout=.0,
                 embed_dropout=.33,
                 n_lstm_hidden=400,
                 n_lstm_layers=3,
                 lstm_dropout=.33,
                 n_mlp_span=500,
                 n_mlp_label=100,
                 mlp_dropout=.33,
                 feat_pad_index=0,
                 pad_index=0,
                 unk_index=1,
                 **kwargs):
        super().__init__()

        self.args = Config().update(locals())
        # the embedding layer
        self.word_embed = nn.Embedding(num_embeddings=n_words,
                                       embedding_dim=n_embed)
        if feat == 'char':
            self.feat_embed = CharLSTM(n_chars=n_feats,
                                       n_embed=n_char_embed,
                                       n_out=n_feat_embed,
                                       pad_index=feat_pad_index)
        elif feat == 'bert':
            self.feat_embed = BertEmbedding(model=bert,
                                            n_layers=n_bert_layers,
                                            n_out=n_feat_embed,
                                            pad_index=feat_pad_index,
                                            max_len=max_len,
                                            dropout=mix_dropout)
            self.n_feat_embed = self.feat_embed.n_out
        elif feat == 'tag':
            self.feat_embed = nn.Embedding(num_embeddings=n_feats,
                                           embedding_dim=n_feat_embed)
        else:
            raise RuntimeError("The feat type should be in ['char', 'bert', 'tag'].")
        self.embed_dropout = IndependentDropout(p=embed_dropout)

        # the lstm layer
        self.lstm = BiLSTM(input_size=n_embed+n_feat_embed,
                           hidden_size=n_lstm_hidden,
                           num_layers=n_lstm_layers,
                           dropout=lstm_dropout)
        self.lstm_dropout = SharedDropout(p=lstm_dropout)

        # the MLP layers
        self.mlp_span_l = MLP(n_in=n_lstm_hidden*2,
                              n_out=n_mlp_span,
                              dropout=mlp_dropout)
        self.mlp_span_r = MLP(n_in=n_lstm_hidden*2,
                              n_out=n_mlp_span,
                              dropout=mlp_dropout)
        self.mlp_label_l = MLP(n_in=n_lstm_hidden*2,
                               n_out=n_mlp_label,
                               dropout=mlp_dropout)
        self.mlp_label_r = MLP(n_in=n_lstm_hidden*2,
                               n_out=n_mlp_label,
                               dropout=mlp_dropout)

        # the Biaffine layers
        self.span_attn = Biaffine(n_in=n_mlp_span,
                                  bias_x=True,
                                  bias_y=False)
        self.label_attn = Biaffine(n_in=n_mlp_label,
                                   n_out=n_labels,
                                   bias_x=True,
                                   bias_y=True)
        self.crf = CRFConstituency()
        self.criterion = nn.CrossEntropyLoss()
        self.pad_index = pad_index
        self.unk_index = unk_index
Esempio n. 6
0
    def __init__(self,
                 n_words,
                 n_feats,
                 n_rels,
                 encoder='lstm',
                 feat='char',
                 n_embed=100,
                 n_feat_embed=100,
                 n_char_embed=50,
                 bert=None,
                 n_bert_layers=4,
                 mix_dropout=.0,
                 embed_dropout=.33,
                 n_lstm_hidden=400,
                 n_lstm_layers=3,
                 n_att_layers=6,
                 lstm_dropout=.33,
                 n_mlp_arc=500,
                 n_mlp_rel=100,
                 mlp_dropout=.33,
                 feat_pad_index=0,
                 pad_index=0,
                 unk_index=1,
                 **kwargs):
        super().__init__()
        self.args = Config().update(locals())

        self.word_embed = nn.Embedding(num_embeddings=n_words,
                                       embedding_dim=n_embed)
        # can trained embed:word in train

        self.feat_embed = CharLSTM(n_chars=n_feats,
                                   n_embed=n_char_embed,
                                   n_out=n_feat_embed,
                                   pad_index=feat_pad_index)

        self.embed_dropout = IndependentDropout(p=embed_dropout)
        # 输入层的dropout,采用独立dropout

        self.encoder_type=encoder
        if(encoder=='lstm'):
            self.encoder = BiLSTM(input_size=n_embed + n_feat_embed,
                               hidden_size=n_lstm_hidden,
                               num_layers=n_lstm_layers,
                               dropout=lstm_dropout)
            self.lstm_dropout = SharedDropout(p=lstm_dropout)
            # 编码层lstm以及shared dropout

        elif(encoder=='att'):
            d_input=n_embed + n_feat_embed
            self.linear1=nn.Linear(d_input,n_lstm_hidden * 2) # 前加
            self.encoder=Attention_encoder(d_model=n_lstm_hidden * 2,n_layers=n_att_layers)
            # self.linear2=nn.Linear(512,n_lstm_hidden * 2,bias=False) # 后加

        self.mlp_arc_d = MLP(n_in=n_lstm_hidden * 2,
                             n_out=n_mlp_arc,
                             dropout=mlp_dropout)
        self.mlp_arc_h = MLP(n_in=n_lstm_hidden * 2,
                             n_out=n_mlp_arc,
                             dropout=mlp_dropout)
        self.mlp_rel_d = MLP(n_in=n_lstm_hidden * 2,
                             n_out=n_mlp_rel,
                             dropout=mlp_dropout)
        self.mlp_rel_h = MLP(n_in=n_lstm_hidden * 2,
                             n_out=n_mlp_rel,
                             dropout=mlp_dropout)
        # 四个不同的全连接层,映射到对应的维度

        self.arc_attn = Biaffine(n_in=n_mlp_arc,
                                 bias_x=True,
                                 bias_y=False)
        self.rel_attn = Biaffine(n_in=n_mlp_rel,
                                 n_out=n_rels,
                                 bias_x=True,
                                 bias_y=True)
        self.criterion = nn.CrossEntropyLoss()
        self.pad_index = pad_index
        self.unk_index = unk_index
Esempio n. 7
0
    def __init__(self,
                 n_words,
                 n_labels,
                 n_tags=None,
                 n_chars=None,
                 n_lemmas=None,
                 feat='tag,char,lemma',
                 n_embed=100,
                 n_embed_proj=125,
                 n_feat_embed=100,
                 n_char_embed=50,
                 char_pad_index=0,
                 bert=None,
                 n_bert_layers=4,
                 mix_dropout=.0,
                 bert_pad_index=0,
                 embed_dropout=.2,
                 n_lstm_hidden=600,
                 n_lstm_layers=3,
                 lstm_dropout=.33,
                 n_mlp_edge=600,
                 n_mlp_label=600,
                 edge_mlp_dropout=.25,
                 label_mlp_dropout=.33,
                 interpolation=0.1,
                 pad_index=0,
                 unk_index=1,
                 **kwargs):
        super().__init__()

        self.args = Config().update(locals())
        # the embedding layer
        self.word_embed = nn.Embedding(num_embeddings=n_words,
                                       embedding_dim=n_embed)
        self.embed_proj = nn.Linear(n_embed, n_embed_proj)

        self.n_input = n_embed + n_embed_proj
        if 'tag' in feat:
            self.tag_embed = nn.Embedding(num_embeddings=n_tags,
                                          embedding_dim=n_feat_embed)
            self.n_input += n_feat_embed
        if 'char' in feat:
            self.char_embed = CharLSTM(n_chars=n_chars,
                                       n_embed=n_char_embed,
                                       n_out=n_feat_embed,
                                       pad_index=char_pad_index)
            self.n_input += n_feat_embed
        if 'lemma' in feat:
            self.lemma_embed = nn.Embedding(num_embeddings=n_lemmas,
                                            embedding_dim=n_feat_embed)
            self.n_input += n_feat_embed
        if 'bert' in feat:
            self.bert_embed = BertEmbedding(model=bert,
                                            n_layers=n_bert_layers,
                                            pad_index=bert_pad_index,
                                            dropout=mix_dropout)
            self.n_input += self.bert_embed.n_out
        self.embed_dropout = IndependentDropout(p=embed_dropout)

        # the lstm layer
        self.lstm = LSTM(input_size=self.n_input,
                         hidden_size=n_lstm_hidden,
                         num_layers=n_lstm_layers,
                         bidirectional=True,
                         dropout=lstm_dropout)
        self.lstm_dropout = SharedDropout(p=lstm_dropout)

        # the MLP layers
        self.mlp_edge_d = MLP(n_in=n_lstm_hidden*2, n_out=n_mlp_edge, dropout=edge_mlp_dropout, activation=False)
        self.mlp_edge_h = MLP(n_in=n_lstm_hidden*2, n_out=n_mlp_edge, dropout=edge_mlp_dropout, activation=False)
        self.mlp_label_d = MLP(n_in=n_lstm_hidden*2, n_out=n_mlp_label, dropout=label_mlp_dropout, activation=False)
        self.mlp_label_h = MLP(n_in=n_lstm_hidden*2, n_out=n_mlp_label, dropout=label_mlp_dropout, activation=False)

        # the Biaffine layers
        self.edge_attn = Biaffine(n_in=n_mlp_edge, n_out=2, bias_x=True, bias_y=True)
        self.label_attn = Biaffine(n_in=n_mlp_label, n_out=n_labels, bias_x=True, bias_y=True)
        self.criterion = nn.CrossEntropyLoss()
        self.interpolation = interpolation
        self.pad_index = pad_index
        self.unk_index = unk_index
Esempio n. 8
0
    def __init__(self,
                 n_words,
                 n_feats,
                 n_labels,
                 feat='char',
                 n_embed=100,
                 n_feat_embed=100,
                 n_char_embed=50,
                 bert=None,
                 n_bert_layers=4,
                 mix_dropout=.0,
                 embed_dropout=.33,
                 n_lstm_hidden=600,
                 n_lstm_layers=3,
                 lstm_dropout=.33,
                 n_mlp_edge=600,
                 n_mlp_label=600,
                 mlp_dropout=.33,
                 feat_pad_index=0,
                 pad_index=0,
                 unk_index=1,
                 **kwargs):
        super().__init__()

        self.args = Config().update(locals())
        # the embedding layer
        self.word_embed = nn.Embedding(num_embeddings=n_words,
                                       embedding_dim=n_embed)
        # the linear to transform 100d glove to 125d
        self.glove_linear = nn.Linear(100, n_embed)  # 用的glove_100d

        if feat == 'char':
            self.feat_embed = CharLSTM(n_chars=n_feats,
                                       n_embed=n_char_embed,
                                       n_out=n_feat_embed,
                                       pad_index=feat_pad_index)
        elif feat == 'bert':
            self.feat_embed = BertEmbedding(model=bert,
                                            n_layers=n_bert_layers,
                                            n_out=n_feat_embed,
                                            pad_index=feat_pad_index,
                                            dropout=mix_dropout)
            self.n_feat_embed = self.feat_embed.n_out
        elif feat == 'tag':
            self.feat_embed = nn.Embedding(num_embeddings=n_feats,
                                           embedding_dim=n_feat_embed)
        else:
            raise RuntimeError(
                "The feat type should be in ['char', 'bert', 'tag'].")
        self.embed_dropout = IndependentDropout(p=embed_dropout)

        # the lstm layer
        self.lstm = LSTM(input_size=n_embed + n_feat_embed,
                         hidden_size=n_lstm_hidden,
                         num_layers=n_lstm_layers,
                         bidirectional=True,
                         dropout=lstm_dropout)
        self.lstm_dropout = SharedDropout(p=lstm_dropout)

        # the MLP layers
        self.mlp_edge_d = MLP(n_in=n_lstm_hidden * 2,
                              n_out=n_mlp_edge,
                              dropout=mlp_dropout)
        self.mlp_edge_h = MLP(n_in=n_lstm_hidden * 2,
                              n_out=n_mlp_edge,
                              dropout=mlp_dropout)
        self.mlp_label_d = MLP(n_in=n_lstm_hidden * 2,
                               n_out=n_mlp_label,
                               dropout=mlp_dropout)
        self.mlp_label_h = MLP(n_in=n_lstm_hidden * 2,
                               n_out=n_mlp_label,
                               dropout=mlp_dropout)

        # the Biaffine layers
        self.edge_attn = Biaffine(n_in=n_mlp_edge,
                                  n_out=2,
                                  bias_x=True,
                                  bias_y=True)
        self.label_attn = Biaffine(n_in=n_mlp_label,
                                   n_out=n_labels,
                                   bias_x=True,
                                   bias_y=True)
        self.criterion = nn.CrossEntropyLoss()
        self.pad_index = pad_index
        self.unk_index = unk_index