Esempio n. 1
0
    def decode(self,
               s_arc,
               s_sib,
               s_rel,
               mask,
               tree=False,
               mbr=True,
               proj=False):
        """
        Args:
            s_arc (torch.Tensor): [batch_size, seq_len, seq_len]
                The scores of all possible arcs.
            s_sib (torch.Tensor): [batch_size, seq_len, seq_len, seq_len]
                The scores of all possible dependent-head-sibling triples.
            s_rel (torch.Tensor): [batch_size, seq_len, seq_len, n_labels]
                The scores of all possible labels on each arc.
            mask (torch.BoolTensor): [batch_size, seq_len, seq_len]
                Mask for covering the unpadded tokens.
            tree (bool):
                If True, ensures to output well-formed trees. Default: False.
            mbr (bool):
                If True, performs MBR decoding. Default: True.
            proj (bool):
                If True, ensures to output projective trees. Default: False.

        Returns:
            arc_preds (torch.Tensor): [batch_size, seq_len]
                The predicted arcs.
            rel_preds (torch.Tensor): [batch_size, seq_len]
                The predicted labels.
        """

        lens = mask.sum(1)
        # prevent self-loops
        s_arc.diagonal(0, 1, 2).fill_(float('-inf'))
        arc_preds = s_arc.argmax(-1)
        bad = [
            not CoNLL.istree(seq[1:i + 1], proj)
            for i, seq in zip(lens.tolist(), arc_preds.tolist())
        ]
        if tree and any(bad):
            if proj and not mbr:
                arc_preds = eisner2o((s_arc, s_sib), mask)
            else:
                alg = eisner if proj else mst
                arc_preds[bad] = alg(s_arc[bad], mask[bad])
        rel_preds = s_rel.argmax(-1).gather(
            -1, arc_preds.unsqueeze(-1)).squeeze(-1)

        return arc_preds, rel_preds
Esempio n. 2
0
    def decode(self,
               s_arc,
               s_sib,
               s_rel,
               mask,
               tree=False,
               mbr=True,
               proj=False):
        r"""
        Args:
            s_arc (~torch.Tensor): ``[batch_size, seq_len, seq_len]``.
                Scores of all possible arcs.
            s_sib (~torch.Tensor): ``[batch_size, seq_len, seq_len, seq_len]``.
                Scores of all possible dependent-head-sibling triples.
            s_rel (~torch.Tensor): ``[batch_size, seq_len, seq_len, n_labels]``.
                Scores of all possible labels on each arc.
            mask (~torch.BoolTensor): ``[batch_size, seq_len]``.
                The mask for covering the unpadded tokens.
            tree (bool):
                If ``True``, ensures to output well-formed trees. Default: ``False``.
            mbr (bool):
                If ``True``, performs MBR decoding. Default: ``True``.
            proj (bool):
                If ``True``, ensures to output projective trees. Default: ``False``.

        Returns:
            ~torch.LongTensor, ~torch.LongTensor:
                Predicted arcs and labels of shape ``[batch_size, seq_len]``.
        """

        lens = mask.sum(1)
        arc_preds = s_arc.argmax(-1)
        bad = [
            not CoNLL.istree(seq[1:i + 1], proj)
            for i, seq in zip(lens.tolist(), arc_preds.tolist())
        ]
        if tree and any(bad):
            if proj and not mbr:
                arc_preds = eisner2o((s_arc, s_sib), mask)
            else:
                alg = eisner if proj else mst
                arc_preds[bad] = alg(s_arc[bad], mask[bad])
        rel_preds = s_rel.argmax(-1).gather(
            -1, arc_preds.unsqueeze(-1)).squeeze(-1)

        return arc_preds, rel_preds