Esempio n. 1
0
def MT_model(perm):

    #def funx1(i,maxL):

    #if i<maxL:
    #return Input(shape=(fpSize,),name=f"MRg_{i}")
    #elif i<2*maxL-3 and i!=maxL+2:

    # elif maxL<=i< 2*maxL:
    #return Input(shape=(FpLen,),name=f"Ml_{i}")
    #else:
    #    return Input(shape=(FpLen1,),name=f"Sq_{i}")

    def funx1(i, maxL):

        if i < maxL:
            return Input(shape=(256, ), name=f"MoR_{i}")

    x2 = [funx1(i, maxL) for i in range(1 * maxL)]

    #    x2_1=Concatenate()([x2[0],x2[1],x2[2]])

    xs = []
    xs = [x2[perm[0]], x2[perm[1]], x2[perm[2]]]
    #xs=[x2[1],x2[2],x2[0]]
    #xs=[x2[1],x2[0],x2[2]]
    #xs=[x2[2],x2[0],x2[1]]
    #xs=[x2[2],x2[1],x2[0]]
    #xs=[x2[2],x2[0],x2[1]]
    #xs1=[]
    xs2 = []
    #xs.append(x2)
    #for i in range(maxL):
    #    xs.append(x2[i])
    #    xs.append(x2[maxL+i])
    #    xs.append(x2[2*maxL+i])

    list1 = [100, 100, 100, 100]
    #list1=[100,58,58,58]
    #   list2=[112,112,112,112]
    pairwise_model = pl.PairwiseModel((256, ),
                                      pl.repeat_layers(Dense,
                                                       list1,
                                                       name="hidden",
                                                       activation='relu'),
                                      name="pairwise_model")

    perm_encoder = pl.PermutationalEncoder(pairwise_model,
                                           maxL,
                                           name="permutational_encoder")
    perm_layer = pl.PermutationalLayer1(perm_encoder,
                                        name="permutational_layer")
    outputs = perm_layer.model(xs)
    outputs = average(outputs)
    #outputs = maximum(outputs)
    #  print("x2",x2)
    output_51 = Dense(100, activation='relu',
                      kernel_initializer=my_init)(outputs)
    #    output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
    #    output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
    #    output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
    #    output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
    #    output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
    #    #output_51 = Dropout(0.5)(output_51)
    #    output_51 = Dense(200, activation='relu',kernel_initializer=my_init)(output_51)
    #

    output_Loss = Dense(17,
                        name='Loss_output',
                        activation='softmax',
                        kernel_initializer=my_init)(output_51)
    #    output_Loss=Dense(17,name='Loss_output',activation='linear',kernel_initializer=my_init)(output_51)
    #output_Loss=Dense(17,name='Loss_output',activation='linear',kernel_initializer=my_init)(output_51)

    model = Model(inputs=x2, outputs=output_Loss)

    #    model.compile(loss={'Loss_output':'categorical_crossentropy'},
    #              optimizer=Adam(lr=0.00005, beta_1=0.9, beta_2=0.999, epsilon=1e-8),  loss_weights = {'Loss_output':1.}
    #              ,metrics=['accuracy']
    #              )

    model.compile(
        loss={'Loss_output': 'categorical_crossentropy'},
        optimizer=Adam(lr=0.00276, beta_1=0.9, beta_2=0.999, epsilon=1e-8),
        loss_weights={'Loss_output': 1.}
        #optimizer=Adam(lr=0.00005, beta_1=0.9, beta_2=0.999, epsilon=1e-8),  loss_weights = {'Loss_output':1.}
        ,
        metrics=['accuracy'])

    model.summary()
    plot_model(model, 'Config3Mod.png', show_shapes=True)

    return model
Esempio n. 2
0
def MT_model(perm):

    #def funx1(i,maxL):

    #if i<maxL:
    #return Input(shape=(fpSize,),name=f"MRg_{i}")
    #elif i<2*maxL-3 and i!=maxL+2:

    # elif maxL<=i< 2*maxL:
    #return Input(shape=(FpLen,),name=f"Ml_{i}")
    #else:
    #    return Input(shape=(FpLen1,),name=f"Sq_{i}")

    def funx1(i, maxL):

        if i < maxL:
            return Input(shape=(FpLen, ), name=f"Mol_{i}")
        elif maxL <= i < 2 * maxL:
            return Input(shape=(FpLen1, ), name=f"S2q_{i}")
        else:
            return Input(shape=(767, ), name=f"Mfp2q_{i}")

    x2 = [funx1(i, maxL) for i in range(2 * maxL)]

    xs = []
    xs1 = []
    xs2 = []
    for i in range(maxL):
        xs.append(x2[perm[i]])
        xs.append(x2[maxL + perm[i]])
    #    xs.append(x2[2*maxL+i])

    list1 = [112, 112, 112, 112]
    #list2=[112,112,112,112]
    pairwise_model = pl.PairwiseModel((256, ),
                                      pl.repeat_layers(Dense,
                                                       list1,
                                                       name="hidden",
                                                       activation='relu'),
                                      name="pairwise_model")

    perm_encoder = pl.PermutationalEncoder(pairwise_model,
                                           2 * maxL,
                                           name="permutational_encoder")
    perm_layer = pl.PermutationalLayer1(perm_encoder,
                                        name="permutational_layer")
    outputs = perm_layer.model(xs)

    perm_layer4 = pl.PermutationalLayer1(
        pl.PermutationalEncoder(
            pl.PairwiseModel((112, ),
                             pl.repeat_layers(Dense, [256],
                                              activation="linear")), 2 * maxL),
        name="permutational_layer4",
    )
    outputs = perm_layer4.model(outputs)

    #outputs = Add()(outputs)
    #outputs1 = Add()(outputs1)
    outputs = maximum(outputs)
    #outputs1 = maximum(outputs1)
    #outputs2 = maximum(outputs2)
    #outputs = average(outputs)
    #    outputs1 = average(outputs1)
    #    outputs2 = average(outputs2)

    #   output_3 = Concatenate()([outputs,outputs1,outputs2])
    output_3 = outputs
    output_3 = Dense(100, activation='relu',
                     kernel_initializer=my_init)(output_3)

    output_Loss = Dense(17,
                        name='Loss_output',
                        activation='softmax',
                        kernel_initializer=my_init)(output_3)
    #output_Loss=Dense(17,name='Loss_output',activation='sigmoid',kernel_initializer=my_init)(output_3)

    model = Model(inputs=x2, outputs=output_Loss)

    model.compile(
        loss={'Loss_output': 'categorical_crossentropy'},
        #model.compile(loss={'Loss_output':'binary_crossentropy'},
        optimizer=Adam(lr=0.00276, beta_1=0.9, beta_2=0.999, epsilon=1e-8),
        loss_weights={'Loss_output': 1.}
        #                optimizer=Adam(lr=0.00005, beta_1=0.9, beta_2=0.999, epsilon=1e-8),  loss_weights = {'Loss_output':1.}
        ,
        metrics=['accuracy'])

    model.summary()
    plot_model(model, 'Config3Mod.png', show_shapes=True)

    return model