def test_copy(self): # train model #1 metric = Metric({"name": "logloss"}) nn = MLPAlgorithm(self.params) nn.fit(self.X, self.y) y_predicted = nn.predict(self.X) loss = metric(self.y, y_predicted) # create model #2 nn2 = MLPAlgorithm(self.params) # do a copy and use it for predictions nn2 = nn.copy() self.assertEqual(type(nn), type(nn2)) y_predicted = nn2.predict(self.X) loss2 = metric(self.y, y_predicted) self.assertEqual(loss, loss2) # the loss of model #2 should not change y_predicted = nn2.predict(self.X) loss4 = metric(self.y, y_predicted) assert_almost_equal(loss2, loss4)
def test_save_and_load(self): metric = Metric({"name": "logloss"}) nn = MLPAlgorithm(self.params) nn.fit(self.X, self.y) y_predicted = nn.predict(self.X) loss = metric(self.y, y_predicted) filename = os.path.join(tempfile.gettempdir(), os.urandom(12).hex()) nn.save(filename) json_desc = nn.get_params() nn2 = MLPAlgorithm(json_desc["params"]) nn2.load(filename) # Finished with the file, delete it os.remove(filename) y_predicted = nn2.predict(self.X) loss2 = metric(self.y, y_predicted) assert_almost_equal(loss, loss2)
def test_is_fitted(self): model = MLPAlgorithm(self.params) self.assertFalse(model.is_fitted()) model.fit(self.X, self.y) self.assertTrue(model.is_fitted())